Second tutorial on DFPT:¶
Phonon band structures, thermodynamical properties.¶
In this tutorial you will learn how to post-process the raw data of the Abinit DFPT calculations to get the following physical properties of periodic solids:
- Interatomic forces constants
- Phonon band structures
- Thermodynamical properties
Visualisation tools are NOT covered in this tutorial. Powerful visualisation procedures have been developed in the Abipy context, relying on matplotlib. See the README of Abipy and the Abipy tutorials.
This tutorial should take about 1 hour.
Note
Supposing you made your own install of ABINIT, the input files to run the examples are in the ~abinit/tests/ directory where ~abinit is the absolute path of the abinit top-level directory. If you have NOT made your own install, ask your system administrator where to find the package, especially the executable and test files.
To execute the tutorials, create a working directory (Work*
) and
copy there the input files and the files file of the lesson. This will be explicitly mentioned in the first lessons,
that will tell you more about the files file (see also section 1.1).
The files file ending with _x (e.g. tbase1_x.files) must be edited every time you start to use a new input file.
Most of the tutorials do not rely on parallelism (except specific tutorials on parallelism). However you can run most of the tutorial examples in parallel, see the topic on parallelism.
In case you work on your own PC or workstation, to make things easier, we suggest you define some handy environment variables by executing the following lines in the terminal:
export ABI_HOME=Replace_with_the_absolute_path_to_the_abinit_top_level_dir export PATH=$ABI_HOME/src/98_main/:$PATH export ABI_TESTS=$ABI_HOME/tests/ export ABI_PSPDIR=$ABI_TESTS/Psps_for_tests/ # Pseudopotentials used in examples.
Examples in this tutorial use these shell variables: copy and paste the code snippets into the terminal (remember to set ABI_HOME first!). The ‘export PATH’ line adds the directory containing the executables to your PATH so that you can invoke the code by simply typing abinit in the terminal instead of providing the absolute path.
1 Generation of a derivative database¶
Before beginning, you might consider to work in a different subdirectory as for the other tutorials. Why not create Work_rf2 in $ABI_TESTS/tutorespfn/Input?
Then copy the files trf2_1.files and trf2_1.in from $ABI_TESTS/tutorespfn/Input* to Work_rf2:
cd $ABI_TESTS/tutorespfn/Input mkdir Work_rf2 cd Work_rf2 cp ../trf2_1_x.files . cp ../trf2_1.in .
This tutorial starts by the generation of a database, that might be quite time-consuming. We suggest you to start immediately this computation with
abinit < trf2_1.files >& log &
It takes about 3-5 minutes to be completed on a PC 2.8 GHz.
In order to do interatomic force constant (IFC) calculations, and to compute associated phonon band structure and thermodynamical properties, you should first have some theoretical background. Let us assume that you have read the litterature relative to the first tutorial on DFPT. You might find additional material, related to the present section, in [Gonze1997a] -especially section IX-, [Lee1995] and [Baroni2001]. If you haven’t read parts of these references, we strongly advise you take the time to read them now.
In short, the idea is that, in order to compute properties for which the phonon frequencies are needed in the full Brillouin zone, one can use an elaborate Fourier interpolation, so that only few dynamical matrices need to be computed directly. Others will be computed by interpolation. A schematic representation of the different steps required to compute the dynamical matrix in the IBZ and post-process the results with anaddb is given below.
Let us have a look at the input file trf2_1.in.
# Crystalline AlAs : computation of the phonon spectrum ndtset 10 #Set 1 : ground state self-consistency getwfk1 0 # Cancel default kptopt1 1 # Automatic generation of k points, taking # into account the symmetry nqpt1 0 # Cancel default tolvrs1 1.0d-18 # SCF stopping criterion (modify default) rfphon1 0 # Cancel default #Q vectors for all datasets #Complete set of symmetry-inequivalent qpt chosen to be commensurate # with kpt mesh so that only one set of GS wave functions is needed. #Generated automatically by running GS calculation with kptopt=1, # nshift=0, shiftk=0 0 0 (to include gamma) and taking output kpt set # file as qpt set. Set nstep=1 so only one iteration runs. nqpt 1 # One qpt for each dataset (only 0 or 1 allowed) # This is the default for all datasets and must # be explicitly turned off for dataset 1. qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00 qpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00 qpt4 2.50000000E-01 0.00000000E+00 0.00000000E+00 qpt5 5.00000000E-01 0.00000000E+00 0.00000000E+00 qpt6 2.50000000E-01 2.50000000E-01 0.00000000E+00 qpt7 5.00000000E-01 2.50000000E-01 0.00000000E+00 qpt8 -2.50000000E-01 2.50000000E-01 0.00000000E+00 qpt9 5.00000000E-01 5.00000000E-01 0.00000000E+00 qpt10 -2.50000000E-01 5.00000000E-01 2.50000000E-01 #Set 2 : Response function calculation of d/dk wave function iscf2 -3 # Need this non-self-consistent option for d/dk kptopt2 2 # Modify default to use time-reversal symmetry rfphon2 0 # Cancel default rfelfd2 2 # Calculate d/dk wave function only tolwfr2 1.0d-22 # Use wave function residual criterion instead #Set 3 : Response function calculation of Q=0 phonons and electric field pert. getddk3 2 # d/dk wave functions from last dataset kptopt3 2 # Modify default to use time-reversal symmetry rfelfd3 3 # Electric-field perturbation response only #Sets 4-10 : Finite-wave-vector phonon calculations (defaults for all datasets) getwfk 1 # Use GS wave functions from dataset1 kptopt 3 # Need full k-point set for finite-Q response rfphon 1 # Do phonon response rfatpol 1 2 # Treat displacements of all atoms rfdir 1 1 1 # Do all directions (symmetry will be used) tolvrs 1.0d-8 # This default is active for sets 3-10 ####################################################################### #Common input variables #Definition of the unit cell acell 3*10.61 # This is equivalent to 10.61 10.61 10.61 rprim 0.0 0.5 0.5 # In tutorials 1 and 2, these primitive vectors 0.5 0.0 0.5 # (to be scaled by acell) were 1 0 0 0 1 0 0 0 1 0.5 0.5 0.0 # that is, the default. #Definition of the atom types ntypat 2 # There are two types of atom znucl 13 33 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, type 1 is the Aluminum, # type 2 is the Arsenic. #Definition of the atoms natom 2 # There are two atoms typat 1 2 # The first is of type 1 (Al), the second is of type 2 (As). xred 0.0 0.0 0.0 0.25 0.25 0.25 #Gives the number of band, explicitely (do not take the default) nband 4 #Exchange-correlation functional ixc 1 # LDA Teter Pade parametrization #Definition of the planewave basis set ecut 3.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the k-point grid ngkpt 4 4 4 nshiftk 4 # Use one copy of grid only (default) shiftk 0.0 0.0 0.5 # This gives the usual fcc Monkhorst-Pack grid 0.0 0.5 0.0 0.5 0.0 0.0 0.5 0.5 0.5 #Definition of the SCF procedure nstep 25 # Maximal number of SCF cycles diemac 9.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # The dielectric constant of AlAs is smaller that the one of Si (=12). #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% test_chain = trf2_1.in, trf2_3.in, trf2_4.in, trf2_5.in, trf2_6.in, trf2_7.in #%% [files] #%% files_to_test = #%% trf2_1.out, tolnlines= 14, tolabs= 5.000e-05, tolrel= 5.000e-04, fld_options=-medium #%% psp_files = 13al.981214.fhi, 33as.pspnc #%% [paral_info] #%% max_nprocs = 2 #%% [extra_info] #%% authors = X. Gonze #%% keywords = NC, DFPT #%% description = Crystalline AlAs : computation of the phonon spectrum #%%<END TEST_INFO>
The calculation is done for AlAs, the same crystalline material as for the first tutorial on DFPT. Many input parameters are also quite similar, both at the level of the description of the unit cell and for the choice of cut-off energy and k point grid.
Still, this input file is rather complex: in one single run, one produces the Derivative Databases (DDBs) needed for the rest of this tutorial. So, it starts with a ground-state calculation (dataset 1), followed by the computation of the response to the d/dk perturbation (dataset 2), and the response to electric fields, and phonons at Gamma (dataset 3). Datasets 4 to 10 generate the dynamical matrices at 7 q wavevectors, other than Gamma. At present (v8.6), one can only compute one q point per dataset, that is why so many datasets are needed.
Also, the values of these q wavevectors are not determined automatically. They must correspond to the q wavevectors needed by the ANADDB utility (see later), that is, they should form a reduced set of symmetry-inequivalent wavevectors, corresponding to a regularly spaced grid. In principle, they might not include the Gamma point, but it is recommended to have it in the set, in order for the Fourier interpolation not to introduce errors at that important point.
Tip
In order to minimize the number of preliminary non-self-consistent calculations, it is advised to take a q point mesh that is adjusted to the k point mesh used for the electronic structure: all q wavevectors should connect two k point wavevectors from this grid.
Such a set of q wavevectors can be generated straightforwardly by running a GS calculation with kptopt = 1, nshiftk = 1, shiftk = 0 0 0 (to include gamma) and taking the output kpt set file as this qpt set. One might set nstep = 1 and nline = 1, so only one iteration runs, or even nstep = 0 and prtvol = -1, so no real DFT calculation is done.
The input file $ABI_TESTS/tutorespfn/Input/trf2_2.in is precisely an input file that can be used to generate such a set of k points. Copy it in the present Work_rf2 directly, as well as the accompanying trf2_2.files. Examine these files, then run this calculation (it is very rapid - it won’t hurt the trf2_1 job). The following k point set is obtained:
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00 2.50000000E-01 0.00000000E+00 0.00000000E+00 5.00000000E-01 0.00000000E+00 0.00000000E+00 2.50000000E-01 2.50000000E-01 0.00000000E+00 5.00000000E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 2.50000000E-01 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 2.50000000E-01
It is, as promised, the same as the q point set in the trf2_1.in file.
Now, it might be worth to examine in some detail one of the Derivative Database that has been created by the trf2_1 run. We suppose that the file trf2_1o_DS3_DDB has already been created. It corresponds to the third dataset, namely the response to q = 0 and electric field. Open this file, and read the 6.5 section of the respfn help file. Examine the trf2_1o_DS3_DDB file carefully.
Seven other similar files will be generated by the trf2_1 run, containing the same header, but a different 2DTE block. It will be the duty of the MRGDDB utility, next section, to gather all these information and merge them into a single DDB file.
Now, there might be two possibilities: either the trf2_1 run is finished, and you can continue the tutorial with the section 2 about the MRGDDB utility, or the run is not finished. In the latter case, instead of waiting for trf2_1 to be finished, we suggest you to pursue with section 3. You will use as DDB file the one that can be found in $ABI_TESTS/tutorespfn/Refs, with the name trf2_3.ddb.out, instead of the one that would result from the section 2. Copy this file to the present directory, then go to section section 3 of this tutorial. You might come back to section 2 afterwards.
2 Manipulation of the derivative databases (the MRGDDB utility)¶
The use of the MRGDDB utility is described in its help file. Please, read it carefully now.
Use MRGDDB to create the merge DDB from the eight DDB’s corresponding to datasets 3 to 10 of the trf2_1 job, containing the dynamical matrices for the 8 q points, as well as the response to the electric field (dielectric tensor and Born effective charges). Name the new DDB trf2_3.ddb.out.
Note
Including also the DDB from dataset 1 won’t hurt (it contains the forces and stresses), but is not needed for the computation of phonon band structure, interatomic force constants, and thermodynamical properties.
File $ABI_TESTS/tutorespfn/Input/trf2_3.in is an example of input file for MRGDDB.
trf2_3.ddb.out AlAs phonons on 4 4 4 mesh 8 trf2_1o_DS3_DDB trf2_1o_DS4_DDB trf2_1o_DS5_DDB trf2_1o_DS6_DDB trf2_1o_DS7_DDB trf2_1o_DS8_DDB trf2_1o_DS9_DDB trf2_1o_DS10_DDB #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = mrgddb #%% test_chain = trf2_1.in, trf2_3.in, trf2_4.in, trf2_5.in, trf2_6.in, trf2_7.in #%% [files] #%% files_to_test = #%% trf2_3.ddb.out, tolnlines= 0, tolabs= 9.192e-10, tolrel= 4.000e-04, fld_options=-medium #%% [paral_info] #%% max_nprocs = 1 #%% [extra_info] #%% authors = X. Gonze #%% keywords = #%% description = Input file for anaddb #%%<END TEST_INFO>
You can copy it in the Work_rf2 directory, and run the merge as follows:
mrgddb < trf2_3.in
3 Analysis of the derivative databases¶
An introduction to the use of the ANADDB utility is described in its help file. Please, read it carefully.
This ANADDB utility is able to perform many different tasks, each governed by a selected set of input variables, with also some input variables common to many of the different tasks. The list of tasks to be done in one run is governed by different flags. Here is the list of flags:
Please, take some time to read the description of each of these flags. Note that some of these flags might be required to allow to run another task. In this tutorial, we will focus on the flags ifcflag and thmflag.
4 The computation of interatomic force constants¶
You can copy the files trf2_4.in and trf2_4.files from $ABI_TESTS/tutorespfn/Input to the Work_rf2 directory. Open the file trf2_4.in. Note that ifcflag is activated.
trf2_4.in trf2_4.out trf2_3.ddb.out trf2_4_band2eps trf2_dummy1 trf2_dummy2 trf2_dummy3
!Input file for the anaddb code. Analysis of the AlAs DDB !Flags ifcflag 1 ! Interatomic force constant flag !Wavevector grid number 1 (coarse grid, from DDB) brav 2 ! Bravais Lattice : 1-S.C., 2-F.C., 3-B.C., 4-Hex.) ngqpt 4 4 4 ! Monkhorst-Pack indices nqshft 1 ! number of q-points in repeated basic q-cell q1shft 3*0.0 !Interatomic force constant info dipdip 1 ! Dipole-dipole interaction treatment ifcana 1 ! Analysis of the IFCs ifcout 20 ! Number of IFC's written in the output, per atom natifc 1 ! Number of atoms in the cell for which ifc's are analysed atifc 1 ! List of atoms #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = anaddb #%% test_chain = trf2_1.in, trf2_3.in, trf2_4.in, trf2_5.in, trf2_6.in, trf2_7.in #%% input_ddb = trf2_3.ddb.out #%% [files] #%% files_to_test = #%% trf2_4.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00, fld_options=-easy #%% [paral_info] #%% max_nprocs = 1 #%% [extra_info] #%% authors = X. Gonze #%% keywords = #%% description = !Input file for the anaddb code. Analysis of the AlAs DDB #%%<END TEST_INFO>
Related input variables can be split in three groups. The first group of variables define the grid of q wavevectors:
Unfortunately, the names of input variables and their meaning is not exactly the same as the names used to generate the k points in ABINIT. This is a shame, a remnant of history. Please read carefully the documentation that describes these input variables.
The second group of variables allows to impose the acoustic sum rule on the dynamical matrices and the charge neutrality on Born effective charges before proceeding with the analysis:
Please, read carefully the explanation for these input variables.
Finally, a third group of variables is related specifically to the analysis of the IFC:
Here also, spend some time to read the associated documentation.
Now, you should issue:
anaddb < trf2_4.files > trf2_4.log
It will last only a few seconds.
The file trf2_4.out contains the list of interatomic force constants, as well as some analysis.
.Version 9.0.0 of ANADDB .(MPI version, prepared for a x86_64_linux_gnu9.2 computer) .Copyright (C) 1998-2020 ABINIT group . ANADDB comes with ABSOLUTELY NO WARRANTY. It is free software, and you are welcome to redistribute it under certain conditions (GNU General Public License, see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt). ABINIT is a project of the Universite Catholique de Louvain, Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt . Please read https://docs.abinit.org/theory/acknowledgments for suggested acknowledgments of the ABINIT effort. For more information, see https://www.abinit.org . .Starting date : Mon 24 Feb 2020. - ( at 16h46 ) ================================================================================ -outvars_anaddb: echo values of input variables ---------------------- Flags : ifcflag 1 Miscellaneous information : asr 1 Interatomic Force Constants Inputs : dipdip 1 dipqua 0 quadqu 0 ifcana 1 ifcout 20 natifc 1 atifc 1 Description of grid 1 : brav 2 ngqpt 4 4 4 nqshft 1 q1shft 0.00000000E+00 0.00000000E+00 0.00000000E+00 ================================================================================ read the DDB information and perform some checks Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 0.0000000 5.3050000 5.3050000 G(1)= -0.0942507 0.0942507 0.0942507 R(2)= 5.3050000 0.0000000 5.3050000 G(2)= 0.0942507 -0.0942507 0.0942507 R(3)= 5.3050000 5.3050000 0.0000000 G(3)= 0.0942507 0.0942507 -0.0942507 Unit cell volume ucvol= 2.9859750E+02 bohr^3 Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees Now the whole DDB is in central memory ================================================================================ Dielectric Tensor and Effective Charges anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma, and impose the ASR on the effective charges The violation of the charge neutrality conditions by the effective charges is as follows : atom electric field displacement direction 1 1 -0.022872 0.000000 1 2 0.000000 0.000000 1 3 0.000000 0.000000 2 1 0.000000 0.000000 2 2 -0.022872 0.000000 2 3 -0.000000 0.000000 3 1 -0.000000 0.000000 3 2 -0.000000 0.000000 3 3 -0.022872 0.000000 Effective charge tensors after imposition of the charge neutrality, and eventual restriction to some part : atom displacement 1 1 2.115792E+00 -9.041670E-17 -9.047704E-17 1 2 -9.041670E-17 2.115792E+00 9.035635E-17 1 3 9.041670E-17 9.041670E-17 2.115792E+00 2 1 -2.115792E+00 9.041670E-17 9.047704E-17 2 2 9.041670E-17 -2.115792E+00 -9.035635E-17 2 3 -9.041670E-17 -9.041670E-17 -2.115792E+00 Now, the imaginary part of the dynamical matrix is zeroed ================================================================================ Calculation of the interatomic forces -begin at tcpu 0.022 and twall 0.024 sec Homogeneous q point set in the B.Z. Grid q points : 32 1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 2) 0.00000000E+00 2.50000000E-01 2.50000000E-01 3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 4) 0.00000000E+00 -2.50000000E-01 -2.50000000E-01 5) 2.50000000E-01 0.00000000E+00 2.50000000E-01 6) 2.50000000E-01 2.50000000E-01 5.00000000E-01 7) 2.50000000E-01 -2.50000000E-01 -1.11022302E-16 8) 5.00000000E-01 0.00000000E+00 5.00000000E-01 9) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 10) -2.50000000E-01 2.50000000E-01 -1.11022302E-16 11) -2.50000000E-01 -2.50000000E-01 -5.00000000E-01 12) 2.50000000E-01 2.50000000E-01 0.00000000E+00 13) 2.50000000E-01 5.00000000E-01 2.50000000E-01 14) 2.50000000E-01 7.50000000E-01 5.00000000E-01 15) 2.50000000E-01 -1.11022302E-16 -2.50000000E-01 16) 5.00000000E-01 2.50000000E-01 2.50000000E-01 17) 5.00000000E-01 5.00000000E-01 5.00000000E-01 18) 5.00000000E-01 -1.11022302E-16 -1.11022302E-16 19) 7.50000000E-01 2.50000000E-01 5.00000000E-01 20) -1.11022302E-16 2.50000000E-01 -2.50000000E-01 21) -1.11022302E-16 5.00000000E-01 -1.11022302E-16 22) -1.11022302E-16 -1.11022302E-16 -5.00000000E-01 23) 5.00000000E-01 5.00000000E-01 0.00000000E+00 24) 5.00000000E-01 7.50000000E-01 2.50000000E-01 25) 5.00000000E-01 2.50000000E-01 -2.50000000E-01 26) 7.50000000E-01 5.00000000E-01 2.50000000E-01 27) 2.50000000E-01 5.00000000E-01 -2.50000000E-01 28) -2.50000000E-01 -2.50000000E-01 0.00000000E+00 29) -2.50000000E-01 -1.11022302E-16 2.50000000E-01 30) -2.50000000E-01 -5.00000000E-01 -2.50000000E-01 31) -1.11022302E-16 -2.50000000E-01 2.50000000E-01 32) -5.00000000E-01 -2.50000000E-01 -2.50000000E-01 The interatomic forces have been obtained Analysis of interatomic force constants Are given : column(1-3), the total force constant then column(4-6), the Ewald part then column(7-9), the short-range part Column 1, 4 and 7 are related to the displacement of the generic atom along x, column 2, 5 and 8 are related to the displacement of the generic atom along y, column 3, 6 and 9 are related to the displacement of the generic atom along z. generic atom number 1 with cartesian coordinates 0.00000000E+00 0.00000000E+00 0.00000000E+00 Third atom defining local coordinates : ib = 2 irpt = 13 1 interaction with atom 1 cell 40 with coordinates 0.000000E+00 0.000000E+00 0.000000E+00 and distance 0.000000E+00 0.09360 -0.00000 0.00000 0.00000 0.00000 0.00000 0.09360 -0.00000 0.00000 0.00000 0.09360 -0.00000 0.00000 0.00000 0.00000 0.00000 0.09360 -0.00000 -0.00000 0.00000 0.09360 0.00000 0.00000 0.00000 -0.00000 0.00000 0.09360 Traces (and ratios) : 0.28080 0.00000 0.28080 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.000000 0.707107 -0.707107 Second local vector : -1.000000 -0.000000 0.000000 Third local vector : 0.000000 0.707107 0.707107 0.09360 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.09360 -0.00000 -0.00000 0.00000 0.09360 0.00000 0.00000 0.00000 0.00000 0.00000 0.09360 0.00000 0.00000 -0.00000 0.09360 0.00000 0.00000 0.00000 0.00000 -0.00000 0.09360 Ratio with respect to the (1,1) element 1.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 1.00000 -0.00000 -0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 1.00000 2 interaction with atom 2 cell 8 with coordinates -2.652500E+00 -2.652500E+00 2.652500E+00 and distance 4.594265E+00 -0.02304 -0.01599 0.01599 0.00000 0.00473 -0.00473 -0.02304 -0.02072 0.02072 -0.01599 -0.02304 0.01599 0.00473 0.00000 -0.00473 -0.02072 -0.02304 0.02072 0.01599 0.01599 -0.02304 -0.00473 -0.00473 0.00000 0.02072 0.02072 -0.02304 Traces (and ratios) : -0.06911 0.00000 -0.06911 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : -0.577350 -0.577350 0.577350 Second local vector : 0.816497 -0.408248 0.408248 Third local vector : 0.000000 0.707107 0.707107 -0.05501 0.00000 -0.00000 0.00946 0.00000 0.00000 -0.06447 0.00000 -0.00000 0.00000 -0.00705 0.00000 0.00000 -0.00473 0.00000 0.00000 -0.00232 0.00000 -0.00000 0.00000 -0.00705 0.00000 0.00000 -0.00473 -0.00000 0.00000 -0.00232 Ratio with respect to the longitudinal ifc 1.00000 -0.00000 0.00000 -0.17194 0.00000 0.00000 1.17194 -0.00000 0.00000 -0.00000 0.12813 -0.00000 0.00000 0.08597 0.00000 -0.00000 0.04216 -0.00000 0.00000 -0.00000 0.12813 0.00000 0.00000 0.08597 0.00000 -0.00000 0.04216 3 interaction with atom 2 cell 13 with coordinates -2.652500E+00 2.652500E+00 -2.652500E+00 and distance 4.594265E+00 -0.02304 0.01599 -0.01599 0.00000 -0.00473 0.00473 -0.02304 0.02072 -0.02072 0.01599 -0.02304 0.01599 -0.00473 0.00000 -0.00473 0.02072 -0.02304 0.02072 -0.01599 0.01599 -0.02304 0.00473 -0.00473 0.00000 -0.02072 0.02072 -0.02304 Traces (and ratios) : -0.06911 0.00000 -0.06911 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : -0.577350 0.577350 -0.577350 Second local vector : 0.816497 0.408248 -0.408248 Third local vector : 0.000000 -0.707107 -0.707107 -0.05501 0.00000 0.00000 0.00946 0.00000 0.00000 -0.06447 0.00000 0.00000 -0.00000 -0.00705 -0.00000 0.00000 -0.00473 0.00000 -0.00000 -0.00232 -0.00000 -0.00000 0.00000 -0.00705 0.00000 0.00000 -0.00473 -0.00000 0.00000 -0.00232 Ratio with respect to the longitudinal ifc 1.00000 -0.00000 -0.00000 -0.17194 0.00000 0.00000 1.17194 -0.00000 -0.00000 0.00000 0.12813 0.00000 0.00000 0.08597 0.00000 0.00000 0.04216 0.00000 0.00000 -0.00000 0.12813 0.00000 0.00000 0.08597 0.00000 -0.00000 0.04216 4 interaction with atom 2 cell 27 with coordinates 2.652500E+00 -2.652500E+00 -2.652500E+00 and distance 4.594265E+00 -0.02304 0.01599 0.01599 0.00000 -0.00473 -0.00473 -0.02304 0.02072 0.02072 0.01599 -0.02304 -0.01599 -0.00473 0.00000 0.00473 0.02072 -0.02304 -0.02072 0.01599 -0.01599 -0.02304 -0.00473 0.00473 0.00000 0.02072 -0.02072 -0.02304 Traces (and ratios) : -0.06911 0.00000 -0.06911 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.577350 -0.577350 -0.577350 Second local vector : 0.816497 0.408248 0.408248 Third local vector : 0.000000 -0.707107 0.707107 -0.05501 0.00000 0.00000 0.00946 0.00000 0.00000 -0.06447 0.00000 0.00000 0.00000 -0.00705 -0.00000 0.00000 -0.00473 0.00000 0.00000 -0.00232 -0.00000 -0.00000 -0.00000 -0.00705 0.00000 0.00000 -0.00473 -0.00000 -0.00000 -0.00232 Ratio with respect to the longitudinal ifc 1.00000 -0.00000 -0.00000 -0.17194 0.00000 0.00000 1.17194 -0.00000 -0.00000 -0.00000 0.12813 0.00000 0.00000 0.08597 0.00000 -0.00000 0.04216 0.00000 0.00000 0.00000 0.12813 0.00000 0.00000 0.08597 0.00000 0.00000 0.04216 5 interaction with atom 2 cell 40 with coordinates 2.652500E+00 2.652500E+00 2.652500E+00 and distance 4.594265E+00 -0.02304 -0.01599 -0.01599 0.00000 0.00473 0.00473 -0.02304 -0.02072 -0.02072 -0.01599 -0.02304 -0.01599 0.00473 0.00000 0.00473 -0.02072 -0.02304 -0.02072 -0.01599 -0.01599 -0.02304 0.00473 0.00473 0.00000 -0.02072 -0.02072 -0.02304 Traces (and ratios) : -0.06911 0.00000 -0.06911 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.577350 0.577350 0.577350 Second local vector : 0.816497 -0.408248 -0.408248 Third local vector : 0.000000 0.707107 -0.707107 -0.05501 0.00000 -0.00000 0.00946 0.00000 0.00000 -0.06447 0.00000 -0.00000 0.00000 -0.00705 0.00000 0.00000 -0.00473 0.00000 0.00000 -0.00232 0.00000 -0.00000 -0.00000 -0.00705 0.00000 0.00000 -0.00473 -0.00000 -0.00000 -0.00232 Ratio with respect to the longitudinal ifc 1.00000 -0.00000 0.00000 -0.17194 0.00000 0.00000 1.17194 -0.00000 0.00000 -0.00000 0.12813 -0.00000 0.00000 0.08597 0.00000 -0.00000 0.04216 -0.00000 0.00000 0.00000 0.12813 0.00000 0.00000 0.08597 0.00000 0.00000 0.04216 6 interaction with atom 1 cell 8 with coordinates -5.305000E+00 -5.305000E+00 0.000000E+00 and distance 7.502403E+00 -0.00259 -0.00267 0.00145 -0.00054 -0.00163 0.00000 -0.00205 -0.00104 0.00145 -0.00267 -0.00259 0.00145 -0.00163 -0.00054 0.00000 -0.00104 -0.00205 0.00145 -0.00145 -0.00145 0.00581 0.00000 0.00000 0.00109 -0.00145 -0.00145 0.00472 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : -0.707107 -0.707107 0.000000 Second local vector : 0.000002 -0.000002 -1.000000 Third local vector : 0.707107 -0.707107 0.000002 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 -0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 -0.00000 0.00000 -0.00000 0.00007 0.00000 0.00000 0.00109 0.00000 -0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10368 0.00000 0.00000 -0.20641 0.00000 0.38852 -0.89727 0.00000 -0.00000 0.00000 -0.01421 0.00000 0.00000 -0.20641 -0.00000 0.00000 0.19220 7 interaction with atom 1 cell 13 with coordinates -5.305000E+00 0.000000E+00 -5.305000E+00 and distance 7.502403E+00 -0.00259 0.00145 -0.00267 -0.00054 0.00000 -0.00163 -0.00205 0.00145 -0.00104 -0.00145 0.00581 -0.00145 0.00000 0.00109 0.00000 -0.00145 0.00472 -0.00145 -0.00267 0.00145 -0.00259 -0.00163 0.00000 -0.00054 -0.00104 0.00145 -0.00205 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : -0.707107 0.000000 -0.707107 Second local vector : -0.000004 -1.000000 0.000004 Third local vector : -0.707107 0.000006 0.707107 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 -0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 -0.00000 0.00000 -0.00000 0.00007 0.00000 0.00000 0.00109 0.00000 -0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10368 0.00001 0.00000 -0.20641 0.00000 0.38852 -0.89727 0.00001 -0.00000 0.00001 -0.01421 0.00000 0.00000 -0.20641 -0.00000 0.00001 0.19220 8 interaction with atom 1 cell 17 with coordinates -5.305000E+00 0.000000E+00 5.305000E+00 and distance 7.502403E+00 -0.00259 -0.00145 0.00267 -0.00054 0.00000 0.00163 -0.00205 -0.00145 0.00104 0.00145 0.00581 -0.00145 0.00000 0.00109 0.00000 0.00145 0.00472 -0.00145 0.00267 0.00145 -0.00259 0.00163 0.00000 -0.00054 0.00104 0.00145 -0.00205 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : -0.707107 0.000000 0.707107 Second local vector : -0.000000 1.000000 -0.000000 Third local vector : -0.707107 -0.000000 -0.707107 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 -0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 -0.00000 0.00000 -0.00000 0.00007 0.00000 0.00000 0.00109 0.00000 -0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10367 0.00000 0.00000 -0.20640 0.00000 0.38852 -0.89727 0.00000 -0.00000 0.00000 -0.01421 0.00000 0.00000 -0.20640 -0.00000 0.00000 0.19220 9 interaction with atom 1 cell 18 with coordinates -5.305000E+00 5.305000E+00 0.000000E+00 and distance 7.502403E+00 -0.00259 0.00267 -0.00145 -0.00054 0.00163 0.00000 -0.00205 0.00104 -0.00145 0.00267 -0.00259 0.00145 0.00163 -0.00054 0.00000 0.00104 -0.00205 0.00145 0.00145 -0.00145 0.00581 0.00000 0.00000 0.00109 0.00145 -0.00145 0.00472 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : -0.707107 0.707107 0.000000 Second local vector : -0.000001 -0.000001 1.000000 Third local vector : 0.707107 0.707107 0.000001 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 0.00000 0.00000 0.00000 0.00007 0.00000 0.00000 0.00109 0.00000 0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10368 -0.00000 0.00000 -0.20641 0.00000 0.38852 -0.89728 -0.00000 0.00000 -0.00000 -0.01421 0.00000 0.00000 -0.20641 0.00000 -0.00000 0.19220 10 interaction with atom 1 cell 27 with coordinates 0.000000E+00 -5.305000E+00 -5.305000E+00 and distance 7.502403E+00 0.00581 -0.00145 -0.00145 0.00109 0.00000 0.00000 0.00472 -0.00145 -0.00145 0.00145 -0.00259 -0.00267 0.00000 -0.00054 -0.00163 0.00145 -0.00205 -0.00104 0.00145 -0.00267 -0.00259 0.00000 -0.00163 -0.00054 0.00145 -0.00104 -0.00205 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.000000 -0.707107 -0.707107 Second local vector : -1.000000 0.000003 -0.000003 Third local vector : 0.000005 0.707107 -0.707107 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 -0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 -0.00000 0.00000 -0.00000 0.00007 0.00000 0.00000 0.00109 0.00000 -0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10368 0.00001 0.00000 -0.20641 0.00000 0.38852 -0.89727 0.00001 -0.00000 0.00001 -0.01421 0.00000 0.00000 -0.20641 -0.00000 0.00001 0.19220 11 interaction with atom 1 cell 31 with coordinates 0.000000E+00 -5.305000E+00 5.305000E+00 and distance 7.502403E+00 0.00581 0.00145 -0.00145 0.00109 0.00000 0.00000 0.00472 0.00145 -0.00145 -0.00145 -0.00259 0.00267 0.00000 -0.00054 0.00163 -0.00145 -0.00205 0.00104 0.00145 0.00267 -0.00259 0.00000 0.00163 -0.00054 0.00145 0.00104 -0.00205 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.000000 -0.707107 0.707107 Second local vector : 1.000000 -0.000001 -0.000001 Third local vector : 0.000001 0.707107 0.707107 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 0.00000 0.00000 0.00000 0.00007 0.00000 0.00000 0.00109 0.00000 0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10368 -0.00000 0.00000 -0.20641 0.00000 0.38852 -0.89728 -0.00000 0.00000 -0.00000 -0.01421 0.00000 0.00000 -0.20641 0.00000 -0.00000 0.19220 12 interaction with atom 1 cell 33 with coordinates 5.305000E+00 -5.305000E+00 0.000000E+00 and distance 7.502403E+00 -0.00259 0.00267 0.00145 -0.00054 0.00163 0.00000 -0.00205 0.00104 0.00145 0.00267 -0.00259 -0.00145 0.00163 -0.00054 0.00000 0.00104 -0.00205 -0.00145 -0.00145 0.00145 0.00581 0.00000 0.00000 0.00109 -0.00145 0.00145 0.00472 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.707107 -0.707107 0.000000 Second local vector : 0.000001 0.000001 1.000000 Third local vector : -0.707107 -0.707107 0.000001 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 0.00000 0.00000 0.00000 0.00007 0.00000 0.00000 0.00109 0.00000 0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10367 -0.00000 0.00000 -0.20640 0.00000 0.38852 -0.89727 -0.00000 0.00000 -0.00000 -0.01421 0.00000 0.00000 -0.20640 0.00000 -0.00000 0.19220 13 interaction with atom 1 cell 37 with coordinates 0.000000E+00 5.305000E+00 -5.305000E+00 and distance 7.502403E+00 0.00581 -0.00145 0.00145 0.00109 0.00000 0.00000 0.00472 -0.00145 0.00145 0.00145 -0.00259 0.00267 0.00000 -0.00054 0.00163 0.00145 -0.00205 0.00104 -0.00145 0.00267 -0.00259 0.00000 0.00163 -0.00054 -0.00145 0.00104 -0.00205 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.000000 0.707107 -0.707107 Second local vector : 1.000000 0.000001 0.000001 Third local vector : 0.000001 -0.707107 -0.707107 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 0.00000 0.00000 0.00000 0.00007 0.00000 0.00000 0.00109 0.00000 0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38851 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38851 0.00000 0.38852 -1.10367 -0.00000 0.00000 -0.20640 0.00000 0.38852 -0.89727 -0.00000 0.00000 -0.00000 -0.01421 0.00000 0.00000 -0.20640 0.00000 -0.00000 0.19220 14 interaction with atom 1 cell 38 with coordinates 5.305000E+00 0.000000E+00 -5.305000E+00 and distance 7.502403E+00 -0.00259 0.00145 0.00267 -0.00054 0.00000 0.00163 -0.00205 0.00145 0.00104 -0.00145 0.00581 0.00145 0.00000 0.00109 0.00000 -0.00145 0.00472 0.00145 0.00267 -0.00145 -0.00259 0.00163 0.00000 -0.00054 0.00104 -0.00145 -0.00205 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.707107 0.000000 -0.707107 Second local vector : -0.000002 1.000000 -0.000002 Third local vector : 0.707107 0.000002 0.707107 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 0.00000 -0.00000 0.00000 0.00007 0.00000 0.00000 0.00109 -0.00000 0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10368 -0.00000 0.00000 -0.20641 0.00000 0.38852 -0.89728 -0.00000 0.00000 -0.00000 -0.01421 0.00000 0.00000 -0.20641 0.00000 -0.00000 0.19220 15 interaction with atom 1 cell 41 with coordinates 0.000000E+00 5.305000E+00 5.305000E+00 and distance 7.502403E+00 0.00581 0.00145 0.00145 0.00109 0.00000 0.00000 0.00472 0.00145 0.00145 -0.00145 -0.00259 -0.00267 0.00000 -0.00054 -0.00163 -0.00145 -0.00205 -0.00104 -0.00145 -0.00267 -0.00259 0.00000 -0.00163 -0.00054 -0.00145 -0.00104 -0.00205 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.000000 0.707107 0.707107 Second local vector : -1.000000 0.000002 -0.000002 Third local vector : -0.000003 -0.707107 0.707107 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 0.00000 -0.00000 0.00000 0.00007 0.00000 0.00000 0.00109 -0.00000 0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10368 -0.00000 0.00000 -0.20641 0.00000 0.38852 -0.89727 -0.00000 0.00000 -0.00000 -0.01421 0.00000 0.00000 -0.20641 0.00000 -0.00000 0.19220 16 interaction with atom 1 cell 42 with coordinates 5.305000E+00 0.000000E+00 5.305000E+00 and distance 7.502403E+00 -0.00259 -0.00145 -0.00267 -0.00054 0.00000 -0.00163 -0.00205 -0.00145 -0.00104 0.00145 0.00581 0.00145 0.00000 0.00109 0.00000 0.00145 0.00472 0.00145 -0.00267 -0.00145 -0.00259 -0.00163 0.00000 -0.00054 -0.00104 -0.00145 -0.00205 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.707107 0.000000 0.707107 Second local vector : -0.000003 -1.000000 0.000003 Third local vector : 0.707107 -0.000004 -0.707107 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 0.00000 -0.00000 0.00000 0.00007 0.00000 0.00000 0.00109 -0.00000 0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10368 -0.00000 0.00000 -0.20641 0.00000 0.38852 -0.89727 -0.00000 0.00000 -0.00000 -0.01421 0.00000 0.00000 -0.20641 0.00000 -0.00000 0.19220 17 interaction with atom 1 cell 43 with coordinates 5.305000E+00 5.305000E+00 0.000000E+00 and distance 7.502403E+00 -0.00259 -0.00267 -0.00145 -0.00054 -0.00163 0.00000 -0.00205 -0.00104 -0.00145 -0.00267 -0.00259 -0.00145 -0.00163 -0.00054 0.00000 -0.00104 -0.00205 -0.00145 0.00145 0.00145 0.00581 0.00000 0.00000 0.00109 0.00145 0.00145 0.00472 Traces (and ratios) : 0.00062 0.00000 0.00062 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : 0.707107 0.707107 0.000000 Second local vector : 0.000000 -0.000000 -1.000000 Third local vector : -0.707107 0.707107 -0.000000 -0.00526 0.00204 0.00000 -0.00217 0.00000 0.00000 -0.00309 0.00204 0.00000 -0.00204 0.00581 0.00000 0.00000 0.00109 0.00000 -0.00204 0.00472 0.00000 -0.00000 0.00000 0.00007 0.00000 0.00000 0.00109 -0.00000 0.00000 -0.00101 Ratio with respect to the longitudinal ifc 1.00000 -0.38852 0.00000 0.41281 0.00000 0.00000 0.58719 -0.38852 0.00000 0.38852 -1.10368 -0.00000 0.00000 -0.20641 0.00000 0.38852 -0.89727 -0.00000 0.00000 -0.00000 -0.01421 0.00000 0.00000 -0.20641 0.00000 -0.00000 0.19220 18 interaction with atom 2 cell 2 with coordinates -7.957500E+00 -2.652500E+00 -2.652500E+00 and distance 8.797347E+00 0.00056 0.00019 0.00019 0.00098 0.00055 0.00055 -0.00042 -0.00036 -0.00036 0.00065 -0.00047 0.00017 0.00055 -0.00049 0.00018 0.00010 0.00002 -0.00001 0.00065 0.00017 -0.00047 0.00055 0.00018 -0.00049 0.00010 -0.00001 0.00002 Traces (and ratios) : -0.00037 0.00000 -0.00037 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : -0.904534 -0.301511 -0.301511 Second local vector : -0.426401 0.639581 0.639624 Third local vector : -0.000013 0.707126 -0.707087 0.00087 0.00028 0.00000 0.00135 0.00000 0.00000 -0.00048 0.00028 0.00000 -0.00038 -0.00060 0.00000 0.00000 -0.00067 0.00000 -0.00038 0.00007 0.00000 0.00000 0.00000 -0.00064 0.00000 0.00000 -0.00067 0.00000 0.00000 0.00003 Ratio with respect to the longitudinal ifc 1.00000 0.32445 0.00000 1.55643 0.00000 0.00000 -0.55643 0.32445 0.00000 -0.43391 -0.69240 0.00001 0.00000 -0.77821 0.00000 -0.43391 0.08581 0.00001 0.00001 0.00000 -0.74002 0.00000 0.00000 -0.77821 0.00001 0.00000 0.03820 19 interaction with atom 2 cell 3 with coordinates -2.652500E+00 -7.957500E+00 -2.652500E+00 and distance 8.797347E+00 -0.00047 0.00065 0.00017 -0.00049 0.00055 0.00018 0.00002 0.00010 -0.00001 0.00019 0.00056 0.00019 0.00055 0.00098 0.00055 -0.00036 -0.00042 -0.00036 0.00017 0.00065 -0.00047 0.00018 0.00055 -0.00049 -0.00001 0.00010 0.00002 Traces (and ratios) : -0.00037 0.00000 -0.00037 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : -0.301511 -0.904534 -0.301511 Second local vector : 0.639640 -0.426401 0.639564 Third local vector : -0.707073 -0.000023 0.707141 0.00087 0.00028 0.00000 0.00135 0.00000 0.00000 -0.00048 0.00028 0.00000 -0.00038 -0.00060 0.00000 0.00000 -0.00067 0.00000 -0.00038 0.00007 0.00000 -0.00000 -0.00000 -0.00064 0.00000 0.00000 -0.00067 -0.00000 -0.00000 0.00003 Ratio with respect to the longitudinal ifc 1.00000 0.32450 0.00000 1.55641 0.00000 0.00000 -0.55641 0.32450 0.00000 -0.43385 -0.69240 0.00001 0.00000 -0.77821 0.00000 -0.43385 0.08580 0.00001 -0.00001 -0.00000 -0.74001 0.00000 0.00000 -0.77821 -0.00001 -0.00000 0.03820 20 interaction with atom 2 cell 4 with coordinates -2.652500E+00 -2.652500E+00 -7.957500E+00 and distance 8.797347E+00 -0.00047 0.00017 0.00065 -0.00049 0.00018 0.00055 0.00002 -0.00001 0.00010 0.00017 -0.00047 0.00065 0.00018 -0.00049 0.00055 -0.00001 0.00002 0.00010 0.00019 0.00019 0.00056 0.00055 0.00055 0.00098 -0.00036 -0.00036 -0.00042 Traces (and ratios) : -0.00037 0.00000 -0.00037 1.00000 0.00000 1.00000 Transformation to local coordinates First local vector : -0.301511 -0.301511 -0.904534 Second local vector : 0.639565 0.639639 -0.426401 Third local vector : 0.707140 -0.707073 -0.000022 0.00087 0.00028 0.00000 0.00135 0.00000 0.00000 -0.00048 0.00028 0.00000 -0.00038 -0.00060 0.00000 0.00000 -0.00067 0.00000 -0.00038 0.00007 0.00000 -0.00000 0.00000 -0.00064 0.00000 0.00000 -0.00067 -0.00000 0.00000 0.00003 Ratio with respect to the longitudinal ifc 1.00000 0.32449 0.00000 1.55642 0.00000 0.00000 -0.55642 0.32449 0.00000 -0.43386 -0.69241 0.00003 0.00000 -0.77821 0.00000 -0.43386 0.08580 0.00003 -0.00001 0.00002 -0.74001 0.00000 0.00000 -0.77821 -0.00001 0.00002 0.03820 - - Proc. 0 individual time (sec): cpu= 1.1 wall= 1.1 ================================================================================ +Total cpu time 1.074 and wall time 1.076 sec anaddb : the run completed succesfully.
Open this file and find the following paragraph:
Analysis of interatomic force constants Are given : column(1-3), the total force constant then column(4-6), the Ewald part then column(7-9), the short-range part Column 1, 4 and 7 are related to the displacement of the generic atom along x, column 2, 5 and 8 are related to the displacement of the generic atom along y, column 3, 6 and 9 are related to the displacement of the generic atom along z.
The interatomic force constants are output for the nuclei specified by the input variable atifc. Here, only atom 1 is considered. The IFCs with respect to the other nuclei is given, by order of increasing distance. For each pair of nuclei involving atom 1, there is first the output of the IFCs in cartesian coordinates, as well as their decomposition into an Ewald and a short-range part, then, the analysis with respect to a local system of coordinate. The latter is chosen such that it diagonalizes the IFC tensor, in case of the self-force constant, and in the other cases, the first vector is the vector joining the two nuclei, in order to decompose the IFC into a longitudinal and a transverse component.
5 Computation of phonon band structures with efficient interpolation¶
You can copy the files trf2_5.in and trf2_5.files from $ABI_TESTS/tutorespfn/Input to the Work_rf2 directory. Then open trf2_5.in.
trf2_5.in trf2_5.out trf2_3.ddb.out trf2_5_band2eps trf2_dummy1 trf2_dummy2 trf2_dummy3
!Input file for the anaddb code. Analysis of the SiO2 DDB !Flags ifcflag 1 ! Interatomic force constant flag ifcout 0 !Wavevector grid number 1 (coarse grid, from DDB) brav 2 ! Bravais Lattice : 1-S.C., 2-F.C., 3-B.C., 4-Hex.) ngqpt 4 4 4 ! Monkhorst-Pack indices nqshft 1 ! number of q-points in repeated basic q-cell q1shft 3*0.0 !Interatomic force constant info dipdip 1 ! Dipole-dipole interaction treatment !Phonon band structure output for band2eps - See note near end for ! dealing with gamma LO-TO splitting issue. eivec 4 !Wavevector list number 1 (Reduced coordinates and normalization factor) nph1l 71 ! number of phonons in list 1 qph1l 0.0000 0.0000 0.0000 1.0 !(gamma point) 0.0375 0.0375 0.0750 1.0 0.0750 0.0750 0.1500 1.0 0.1125 0.1125 0.2250 1.0 0.1500 0.1500 0.3000 1.0 0.1875 0.1875 0.3750 1.0 0.2250 0.2250 0.4500 1.0 0.2625 0.2625 0.5250 1.0 0.3000 0.3000 0.6000 1.0 0.3375 0.3375 0.6750 1.0 0.3750 0.3750 0.7500 1.0 !(K point) 0.3875 0.3875 0.7750 1.0 0.4000 0.4000 0.8000 1.0 0.4125 0.4125 0.8250 1.0 0.4250 0.4250 0.8500 1.0 0.4375 0.4375 0.8750 1.0 0.4500 0.4500 0.9000 1.0 0.4625 0.4625 0.9250 1.0 0.4750 0.4750 0.9500 1.0 0.4875 0.4875 0.9750 1.0 0.5000 0.5000 1.0000 1.0 !(X point) 0.5500 0.5500 1.0000 1.0 0.6000 0.6000 1.0000 1.0 0.6500 0.6500 1.0000 1.0 0.7000 0.7000 1.0000 1.0 0.7500 0.7500 1.0000 1.0 0.8000 0.8000 1.0000 1.0 0.8500 0.8500 1.0000 1.0 0.9000 0.9000 1.0000 1.0 0.9500 0.9500 1.0000 1.0 1.0000 1.0000 1.0000 1.0 !(gamma point) 0.9500 0.9500 0.9500 1.0 0.9000 0.9000 0.9000 1.0 0.8500 0.8500 0.8500 1.0 0.8000 0.8000 0.8000 1.0 0.7500 0.7500 0.7500 1.0 0.7000 0.7000 0.7000 1.0 0.6500 0.6500 0.6500 1.0 0.6000 0.6000 0.6000 1.0 0.5500 0.5500 0.5500 1.0 0.5000 0.5000 0.5000 1.0 !(L point) 0.5000 0.4500 0.5000 1.0 0.5000 0.4000 0.5000 1.0 0.5000 0.3500 0.5000 1.0 0.5000 0.3000 0.5000 1.0 0.5000 0.2500 0.5000 1.0 0.5000 0.2000 0.5000 1.0 0.5000 0.1500 0.5000 1.0 0.5000 0.1000 0.5000 1.0 0.5000 0.0500 0.5000 1.0 0.5000 0.0000 0.5000 1.0 !(X point) 0.5000 0.0250 0.5250 1.0 0.5000 0.0500 0.5500 1.0 0.5000 0.0750 0.5750 1.0 0.5000 0.1000 0.6000 1.0 0.5000 0.1250 0.6250 1.0 0.5000 0.1500 0.6500 1.0 0.5000 0.1750 0.6750 1.0 0.5000 0.2000 0.7000 1.0 0.5000 0.2250 0.7250 1.0 0.5000 0.2500 0.7500 1.0 !(W point) 0.5000 0.2750 0.7250 1.0 0.5000 0.3000 0.7000 1.0 0.5000 0.3250 0.6750 1.0 0.5000 0.3500 0.6500 1.0 0.5000 0.3750 0.6250 1.0 0.5000 0.4000 0.6000 1.0 0.5000 0.4250 0.5750 1.0 0.5000 0.4500 0.5500 1.0 0.5000 0.4750 0.5250 1.0 0.5000 0.5000 0.5000 1.0 !(L point) !Wavevector list number 2 (Cartesian directions for non-analytic gamma phonons) !The output for this calculation must be cut-and-pasted into the ! t59_out.freq file to be used as band2eps input to get proper LO-TO ! splitting at gamma. Note that gamma occurrs twice. nph2l 1 ! number of directions in list 2 qph2l 1.0 0.0 0.0 0.0 #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = anaddb #%% test_chain = trf2_1.in, trf2_3.in, trf2_4.in, trf2_5.in, trf2_6.in, trf2_7.in #%% input_ddb = trf2_3.ddb.out #%% [files] #%% files_to_test = #%% trf2_5.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00, fld_options=-easy #%% psp_files = 13al.981214.fhi, 33as.pspnc #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = X. Gonze #%% keywords = #%% description = Input file for the anaddb code. Analysis of the SiO2 DDB #%%<END TEST_INFO>
Note that ifcflag is again activated. Indeed, in order to compute a phonon band structure using the Fourier interpolation, the IFCs are required. This is why the two first groups of variables, needed to generate the IFCs are still defined. The third group of variables is now restricted to dipdip only.
Then, come the input variables needed to define the list of q wavevectors in the band structure:
- eivec: flag to turn on the analysis of phonon eigenvectors
- nph1l: number of q-points for phonon interpolation
- qph1l: list of q-points for phonon interpolation
- nph2l: number of q-directions for LO-TO correction
- qph2l: list of q-directions for LO-TO correction
Now, you should issue:
anaddb < trf2_5.files > trf2_5.log
It will last only a few seconds.
The file trf2_5.out contains the list of eigenvalues, for all the needed q-wavevectors. You can iopen it, and have a look at the different sections of the file. Note that the interatomic force constants are computed (they are needed for the Fourier interpolation), but not printed.
.Version 9.0.0 of ANADDB .(MPI version, prepared for a x86_64_linux_gnu9.2 computer) .Copyright (C) 1998-2020 ABINIT group . ANADDB comes with ABSOLUTELY NO WARRANTY. It is free software, and you are welcome to redistribute it under certain conditions (GNU General Public License, see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt). ABINIT is a project of the Universite Catholique de Louvain, Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt . Please read https://docs.abinit.org/theory/acknowledgments for suggested acknowledgments of the ABINIT effort. For more information, see https://www.abinit.org . .Starting date : Mon 24 Feb 2020. - ( at 16h46 ) ================================================================================ -outvars_anaddb: echo values of input variables ---------------------- Flags : ifcflag 1 Miscellaneous information : eivec 4 asr 1 Interatomic Force Constants Inputs : dipdip 1 dipqua 0 quadqu 0 ifcana 0 ifcout 0 Description of grid 1 : brav 2 ngqpt 4 4 4 nqshft 1 q1shft 0.00000000E+00 0.00000000E+00 0.00000000E+00 First list of wavevector (reduced coord.) : nph1l 71 qph1l 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.000E+00 3.75000000E-02 3.75000000E-02 7.50000000E-02 1.000E+00 7.50000000E-02 7.50000000E-02 1.50000000E-01 1.000E+00 1.12500000E-01 1.12500000E-01 2.25000000E-01 1.000E+00 1.50000000E-01 1.50000000E-01 3.00000000E-01 1.000E+00 1.87500000E-01 1.87500000E-01 3.75000000E-01 1.000E+00 2.25000000E-01 2.25000000E-01 4.50000000E-01 1.000E+00 2.62500000E-01 2.62500000E-01 5.25000000E-01 1.000E+00 3.00000000E-01 3.00000000E-01 6.00000000E-01 1.000E+00 3.37500000E-01 3.37500000E-01 6.75000000E-01 1.000E+00 3.75000000E-01 3.75000000E-01 7.50000000E-01 1.000E+00 3.87500000E-01 3.87500000E-01 7.75000000E-01 1.000E+00 4.00000000E-01 4.00000000E-01 8.00000000E-01 1.000E+00 4.12500000E-01 4.12500000E-01 8.25000000E-01 1.000E+00 4.25000000E-01 4.25000000E-01 8.50000000E-01 1.000E+00 4.37500000E-01 4.37500000E-01 8.75000000E-01 1.000E+00 4.50000000E-01 4.50000000E-01 9.00000000E-01 1.000E+00 4.62500000E-01 4.62500000E-01 9.25000000E-01 1.000E+00 4.75000000E-01 4.75000000E-01 9.50000000E-01 1.000E+00 4.87500000E-01 4.87500000E-01 9.75000000E-01 1.000E+00 5.00000000E-01 5.00000000E-01 1.00000000E+00 1.000E+00 5.50000000E-01 5.50000000E-01 1.00000000E+00 1.000E+00 6.00000000E-01 6.00000000E-01 1.00000000E+00 1.000E+00 6.50000000E-01 6.50000000E-01 1.00000000E+00 1.000E+00 7.00000000E-01 7.00000000E-01 1.00000000E+00 1.000E+00 7.50000000E-01 7.50000000E-01 1.00000000E+00 1.000E+00 8.00000000E-01 8.00000000E-01 1.00000000E+00 1.000E+00 8.50000000E-01 8.50000000E-01 1.00000000E+00 1.000E+00 9.00000000E-01 9.00000000E-01 1.00000000E+00 1.000E+00 9.50000000E-01 9.50000000E-01 1.00000000E+00 1.000E+00 1.00000000E+00 1.00000000E+00 1.00000000E+00 1.000E+00 9.50000000E-01 9.50000000E-01 9.50000000E-01 1.000E+00 9.00000000E-01 9.00000000E-01 9.00000000E-01 1.000E+00 8.50000000E-01 8.50000000E-01 8.50000000E-01 1.000E+00 8.00000000E-01 8.00000000E-01 8.00000000E-01 1.000E+00 7.50000000E-01 7.50000000E-01 7.50000000E-01 1.000E+00 7.00000000E-01 7.00000000E-01 7.00000000E-01 1.000E+00 6.50000000E-01 6.50000000E-01 6.50000000E-01 1.000E+00 6.00000000E-01 6.00000000E-01 6.00000000E-01 1.000E+00 5.50000000E-01 5.50000000E-01 5.50000000E-01 1.000E+00 5.00000000E-01 5.00000000E-01 5.00000000E-01 1.000E+00 5.00000000E-01 4.50000000E-01 5.00000000E-01 1.000E+00 5.00000000E-01 4.00000000E-01 5.00000000E-01 1.000E+00 5.00000000E-01 3.50000000E-01 5.00000000E-01 1.000E+00 5.00000000E-01 3.00000000E-01 5.00000000E-01 1.000E+00 5.00000000E-01 2.50000000E-01 5.00000000E-01 1.000E+00 5.00000000E-01 2.00000000E-01 5.00000000E-01 1.000E+00 5.00000000E-01 1.50000000E-01 5.00000000E-01 1.000E+00 5.00000000E-01 1.00000000E-01 5.00000000E-01 1.000E+00 5.00000000E-01 5.00000000E-02 5.00000000E-01 1.000E+00 5.00000000E-01 0.00000000E+00 5.00000000E-01 1.000E+00 5.00000000E-01 2.50000000E-02 5.25000000E-01 1.000E+00 5.00000000E-01 5.00000000E-02 5.50000000E-01 1.000E+00 5.00000000E-01 7.50000000E-02 5.75000000E-01 1.000E+00 5.00000000E-01 1.00000000E-01 6.00000000E-01 1.000E+00 5.00000000E-01 1.25000000E-01 6.25000000E-01 1.000E+00 5.00000000E-01 1.50000000E-01 6.50000000E-01 1.000E+00 5.00000000E-01 1.75000000E-01 6.75000000E-01 1.000E+00 5.00000000E-01 2.00000000E-01 7.00000000E-01 1.000E+00 5.00000000E-01 2.25000000E-01 7.25000000E-01 1.000E+00 5.00000000E-01 2.50000000E-01 7.50000000E-01 1.000E+00 5.00000000E-01 2.75000000E-01 7.25000000E-01 1.000E+00 5.00000000E-01 3.00000000E-01 7.00000000E-01 1.000E+00 5.00000000E-01 3.25000000E-01 6.75000000E-01 1.000E+00 5.00000000E-01 3.50000000E-01 6.50000000E-01 1.000E+00 5.00000000E-01 3.75000000E-01 6.25000000E-01 1.000E+00 5.00000000E-01 4.00000000E-01 6.00000000E-01 1.000E+00 5.00000000E-01 4.25000000E-01 5.75000000E-01 1.000E+00 5.00000000E-01 4.50000000E-01 5.50000000E-01 1.000E+00 5.00000000E-01 4.75000000E-01 5.25000000E-01 1.000E+00 5.00000000E-01 5.00000000E-01 5.00000000E-01 1.000E+00 Second list of wavevector (cart. coord.) : nph2l 1 qph2l 1.00000000E+00 0.00000000E+00 0.00000000E+00 0.000E+00 ================================================================================ read the DDB information and perform some checks Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 0.0000000 5.3050000 5.3050000 G(1)= -0.0942507 0.0942507 0.0942507 R(2)= 5.3050000 0.0000000 5.3050000 G(2)= 0.0942507 -0.0942507 0.0942507 R(3)= 5.3050000 5.3050000 0.0000000 G(3)= 0.0942507 0.0942507 -0.0942507 Unit cell volume ucvol= 2.9859750E+02 bohr^3 Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees Now the whole DDB is in central memory ================================================================================ Dielectric Tensor and Effective Charges anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma, and impose the ASR on the effective charges The violation of the charge neutrality conditions by the effective charges is as follows : atom electric field displacement direction 1 1 -0.022872 0.000000 1 2 0.000000 0.000000 1 3 0.000000 0.000000 2 1 0.000000 0.000000 2 2 -0.022872 0.000000 2 3 -0.000000 0.000000 3 1 -0.000000 0.000000 3 2 -0.000000 0.000000 3 3 -0.022872 0.000000 Effective charge tensors after imposition of the charge neutrality, and eventual restriction to some part : atom displacement 1 1 2.115792E+00 -9.041670E-17 -9.047704E-17 1 2 -9.041670E-17 2.115792E+00 9.035635E-17 1 3 9.041670E-17 9.041670E-17 2.115792E+00 2 1 -2.115792E+00 9.041670E-17 9.047704E-17 2 2 9.041670E-17 -2.115792E+00 -9.035635E-17 2 3 -9.041670E-17 -9.041670E-17 -2.115792E+00 Now, the imaginary part of the dynamical matrix is zeroed ================================================================================ Calculation of the interatomic forces -begin at tcpu 0.075 and twall 0.075 sec Homogeneous q point set in the B.Z. Grid q points : 32 1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 2) 0.00000000E+00 2.50000000E-01 2.50000000E-01 3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 4) 0.00000000E+00 -2.50000000E-01 -2.50000000E-01 5) 2.50000000E-01 0.00000000E+00 2.50000000E-01 6) 2.50000000E-01 2.50000000E-01 5.00000000E-01 7) 2.50000000E-01 -2.50000000E-01 -1.11022302E-16 8) 5.00000000E-01 0.00000000E+00 5.00000000E-01 9) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 10) -2.50000000E-01 2.50000000E-01 -1.11022302E-16 11) -2.50000000E-01 -2.50000000E-01 -5.00000000E-01 12) 2.50000000E-01 2.50000000E-01 0.00000000E+00 13) 2.50000000E-01 5.00000000E-01 2.50000000E-01 14) 2.50000000E-01 7.50000000E-01 5.00000000E-01 15) 2.50000000E-01 -1.11022302E-16 -2.50000000E-01 16) 5.00000000E-01 2.50000000E-01 2.50000000E-01 17) 5.00000000E-01 5.00000000E-01 5.00000000E-01 18) 5.00000000E-01 -1.11022302E-16 -1.11022302E-16 19) 7.50000000E-01 2.50000000E-01 5.00000000E-01 20) -1.11022302E-16 2.50000000E-01 -2.50000000E-01 21) -1.11022302E-16 5.00000000E-01 -1.11022302E-16 22) -1.11022302E-16 -1.11022302E-16 -5.00000000E-01 23) 5.00000000E-01 5.00000000E-01 0.00000000E+00 24) 5.00000000E-01 7.50000000E-01 2.50000000E-01 25) 5.00000000E-01 2.50000000E-01 -2.50000000E-01 26) 7.50000000E-01 5.00000000E-01 2.50000000E-01 27) 2.50000000E-01 5.00000000E-01 -2.50000000E-01 28) -2.50000000E-01 -2.50000000E-01 0.00000000E+00 29) -2.50000000E-01 -1.11022302E-16 2.50000000E-01 30) -2.50000000E-01 -5.00000000E-01 -2.50000000E-01 31) -1.11022302E-16 -2.50000000E-01 2.50000000E-01 32) -5.00000000E-01 -2.50000000E-01 -2.50000000E-01 The interatomic forces have been obtained ================================================================================ Treat the first list of vectors Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000 Phonon energies in Hartree : 0.000000E+00 0.000000E+00 0.000000E+00 1.568554E-03 1.568554E-03 1.568554E-03 Phonon frequencies in cm-1 : - 0.000000E+00 0.000000E+00 0.000000E+00 3.442577E+02 3.442577E+02 - 3.442577E+02 Analysis of degeneracies and characters (maximum tolerance=1.00E-06 a.u.) For each vibration mode, or group of modes if degenerate, the characters are given for each symmetry operation (see the list in the log file). Symmetry characters of vibration mode # 1 degenerate with vibration modes # 2 to 3 3.0 -1.0 -1.0 -1.0 1.0 -1.0 1.0 -1.0 -0.0 -0.0 0.0 0.0 1.0 -1.0 -1.0 1.0 0.0 0.0 -0.0 -0.0 1.0 1.0 -1.0 -1.0 Symmetry characters of vibration mode # 4 degenerate with vibration modes # 5 to 6 3.0 -1.0 -1.0 -1.0 1.0 -1.0 1.0 -1.0 -0.0 -0.0 0.0 -0.0 1.0 -1.0 -1.0 1.0 0.0 0.0 0.0 -0.0 1.0 1.0 -1.0 -1.0 Phonon wavevector (reduced coordinates) : 0.03750 0.03750 0.07500 Phonon energies in Hartree : 7.795285E-05 9.980229E-05 1.577695E-04 1.562166E-03 1.567662E-03 1.724379E-03 Phonon frequencies in cm-1 : - 1.710867E+01 2.190407E+01 3.462641E+01 3.428557E+02 3.440620E+02 - 3.784574E+02 Speed of sound for this q and mode: in atomic units: 0.1241055642E-02 in units km/s: 2.71505 Partial Debye temperature for this q and mode: in atomic units: 0.7237349265E-03 in SI units K : 228.53714 Speed of sound for this q and mode: in atomic units: 0.1588911710E-02 in units km/s: 3.47605 Partial Debye temperature for this q and mode: in atomic units: 0.9265909287E-03 in SI units K : 292.59393 Speed of sound for this q and mode: in atomic units: 0.2511784601E-02 in units km/s: 5.49501 Partial Debye temperature for this q and mode: in atomic units: 0.1464774167E-02 in SI units K : 462.53855 Phonon wavevector (reduced coordinates) : 0.07500 0.07500 0.15000 Phonon energies in Hartree : 1.510316E-04 1.997060E-04 3.074081E-04 1.546884E-03 1.564208E-03 1.706321E-03 Phonon frequencies in cm-1 : - 3.314760E+01 4.383041E+01 6.746829E+01 3.395018E+02 3.433040E+02 - 3.744942E+02 Speed of sound for this q and mode: in atomic units: 0.1202256110E-02 in units km/s: 2.63017 Partial Debye temperature for this q and mode: in atomic units: 0.7011085628E-03 in SI units K : 221.39231 Speed of sound for this q and mode: in atomic units: 0.1589719247E-02 in units km/s: 3.47781 Partial Debye temperature for this q and mode: in atomic units: 0.9270618526E-03 in SI units K : 292.74263 Speed of sound for this q and mode: in atomic units: 0.2447060021E-02 in units km/s: 5.35341 Partial Debye temperature for this q and mode: in atomic units: 0.1427029333E-02 in SI units K : 450.61969 Phonon wavevector (reduced coordinates) : 0.11250 0.11250 0.22500 Phonon energies in Hartree : 2.159182E-04 2.972209E-04 4.421728E-04 1.531171E-03 1.556374E-03 1.676685E-03 Phonon frequencies in cm-1 : - 4.738857E+01 6.523244E+01 9.704572E+01 3.360532E+02 3.415847E+02 - 3.679897E+02 Phonon wavevector (reduced coordinates) : 0.15000 0.15000 0.30000 Phonon energies in Hartree : 2.717020E-04 3.869205E-04 5.580036E-04 1.520603E-03 1.542538E-03 1.638666E-03 Phonon frequencies in cm-1 : - 5.963171E+01 8.491924E+01 1.224676E+02 3.337337E+02 3.385479E+02 - 3.596455E+02 Phonon wavevector (reduced coordinates) : 0.18750 0.18750 0.37500 Phonon energies in Hartree : 3.194811E-04 4.630449E-04 6.538201E-04 1.510670E-03 1.522530E-03 1.600930E-03 Phonon frequencies in cm-1 : - 7.011800E+01 1.016266E+02 1.434969E+02 3.315538E+02 3.341567E+02 - 3.513635E+02 Phonon wavevector (reduced coordinates) : 0.22500 0.22500 0.45000 Phonon energies in Hartree : 3.607519E-04 5.231523E-04 7.299392E-04 1.488838E-03 1.498259E-03 1.576447E-03 Phonon frequencies in cm-1 : - 7.917588E+01 1.148187E+02 1.602031E+02 3.267622E+02 3.288299E+02 - 3.459902E+02 Phonon wavevector (reduced coordinates) : 0.26250 0.26250 0.52500 Phonon energies in Hartree : 3.956084E-04 5.691329E-04 7.861710E-04 1.457987E-03 1.473367E-03 1.564636E-03 Phonon frequencies in cm-1 : - 8.682601E+01 1.249102E+02 1.725446E+02 3.199911E+02 3.233668E+02 - 3.433980E+02 Phonon wavevector (reduced coordinates) : 0.30000 0.30000 0.60000 Phonon energies in Hartree : 4.222266E-04 6.026179E-04 8.226684E-04 1.433654E-03 1.451995E-03 1.558675E-03 Phonon frequencies in cm-1 : - 9.266804E+01 1.322593E+02 1.805548E+02 3.146507E+02 3.186761E+02 - 3.420897E+02 Phonon wavevector (reduced coordinates) : 0.33750 0.33750 0.67500 Phonon energies in Hartree : 4.381552E-04 6.156317E-04 8.453991E-04 1.424197E-03 1.437169E-03 1.563291E-03 Phonon frequencies in cm-1 : - 9.616394E+01 1.351155E+02 1.855437E+02 3.125752E+02 3.154222E+02 - 3.431027E+02 Phonon wavevector (reduced coordinates) : 0.37500 0.37500 0.75000 Phonon energies in Hartree : 4.424639E-04 5.918846E-04 8.680708E-04 1.426644E-03 1.429647E-03 1.588139E-03 Phonon frequencies in cm-1 : - 9.710960E+01 1.299036E+02 1.905195E+02 3.131121E+02 3.137712E+02 - 3.485563E+02 Phonon wavevector (reduced coordinates) : 0.38750 0.38750 0.77500 Phonon energies in Hartree : 4.415964E-04 5.752161E-04 8.769186E-04 1.428195E-03 1.428544E-03 1.601588E-03 Phonon frequencies in cm-1 : - 9.691920E+01 1.262453E+02 1.924614E+02 3.134527E+02 3.135292E+02 - 3.515080E+02 Phonon wavevector (reduced coordinates) : 0.40000 0.40000 0.80000 Phonon energies in Hartree : 4.398251E-04 5.552767E-04 8.860997E-04 1.427989E-03 1.429514E-03 1.617061E-03 Phonon frequencies in cm-1 : - 9.653045E+01 1.218691E+02 1.944764E+02 3.134074E+02 3.137420E+02 - 3.549040E+02 Phonon wavevector (reduced coordinates) : 0.41250 0.41250 0.82500 Phonon energies in Hartree : 4.373612E-04 5.331477E-04 8.952406E-04 1.427870E-03 1.430443E-03 1.633819E-03 Phonon frequencies in cm-1 : - 9.598969E+01 1.170124E+02 1.964826E+02 3.133811E+02 3.139459E+02 - 3.585818E+02 Phonon wavevector (reduced coordinates) : 0.42500 0.42500 0.85000 Phonon energies in Hartree : 4.344483E-04 5.100432E-04 9.039643E-04 1.428068E-03 1.430956E-03 1.650954E-03 Phonon frequencies in cm-1 : - 9.535037E+01 1.119415E+02 1.983972E+02 3.134247E+02 3.140585E+02 - 3.623425E+02 Phonon wavevector (reduced coordinates) : 0.43750 0.43750 0.87500 Phonon energies in Hartree : 4.313508E-04 4.872491E-04 9.119302E-04 1.428469E-03 1.431110E-03 1.667494E-03 Phonon frequencies in cm-1 : - 9.467057E+01 1.069388E+02 2.001455E+02 3.135126E+02 3.140924E+02 - 3.659727E+02 Phonon wavevector (reduced coordinates) : 0.45000 0.45000 0.90000 Phonon energies in Hartree : 4.283401E-04 4.660834E-04 9.188482E-04 1.428964E-03 1.431008E-03 1.682498E-03 Phonon frequencies in cm-1 : - 9.400978E+01 1.022935E+02 2.016639E+02 3.136213E+02 3.140700E+02 - 3.692656E+02 Phonon wavevector (reduced coordinates) : 0.46250 0.46250 0.92500 Phonon energies in Hartree : 4.256760E-04 4.478502E-04 9.244801E-04 1.429457E-03 1.430770E-03 1.695118E-03 Phonon frequencies in cm-1 : - 9.342507E+01 9.829177E+01 2.028999E+02 3.137295E+02 3.140176E+02 - 3.720354E+02 Phonon wavevector (reduced coordinates) : 0.47500 0.47500 0.95000 Phonon energies in Hartree : 4.235884E-04 4.337672E-04 9.286389E-04 1.429869E-03 1.430506E-03 1.704656E-03 Phonon frequencies in cm-1 : - 9.296692E+01 9.520089E+01 2.038127E+02 3.138200E+02 3.139597E+02 - 3.741288E+02 Phonon wavevector (reduced coordinates) : 0.48750 0.48750 0.97500 Phonon energies in Hartree : 4.222584E-04 4.248544E-04 9.311893E-04 1.430141E-03 1.430308E-03 1.710592E-03 Phonon frequencies in cm-1 : - 9.267502E+01 9.324477E+01 2.043724E+02 3.138796E+02 3.139163E+02 - 3.754316E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.50000 1.00000 Phonon energies in Hartree : 4.218018E-04 4.218018E-04 9.320487E-04 1.430235E-03 1.430235E-03 1.712607E-03 Phonon frequencies in cm-1 : - 9.257480E+01 9.257480E+01 2.045610E+02 3.139004E+02 3.139004E+02 - 3.758737E+02 Phonon wavevector (reduced coordinates) : 0.55000 0.55000 1.00000 Phonon energies in Hartree : 4.224286E-04 4.224286E-04 9.198501E-04 1.430392E-03 1.430392E-03 1.713199E-03 Phonon frequencies in cm-1 : - 9.271237E+01 9.271237E+01 2.018838E+02 3.139348E+02 3.139348E+02 - 3.760037E+02 Phonon wavevector (reduced coordinates) : 0.60000 0.60000 1.00000 Phonon energies in Hartree : 4.222994E-04 4.222994E-04 8.837014E-04 1.431902E-03 1.431902E-03 1.714875E-03 Phonon frequencies in cm-1 : - 9.268400E+01 9.268400E+01 1.939500E+02 3.142661E+02 3.142661E+02 - 3.763715E+02 Phonon wavevector (reduced coordinates) : 0.65000 0.65000 1.00000 Phonon energies in Hartree : 4.163542E-04 4.163542E-04 8.249109E-04 1.437339E-03 1.437339E-03 1.717357E-03 Phonon frequencies in cm-1 : - 9.137919E+01 9.137919E+01 1.810470E+02 3.154595E+02 3.154595E+02 - 3.769163E+02 Phonon wavevector (reduced coordinates) : 0.70000 0.70000 1.00000 Phonon energies in Hartree : 3.988215E-04 3.988215E-04 7.455435E-04 1.449362E-03 1.449362E-03 1.720255E-03 Phonon frequencies in cm-1 : - 8.753121E+01 8.753121E+01 1.636279E+02 3.180982E+02 3.180982E+02 - 3.775523E+02 Phonon wavevector (reduced coordinates) : 0.75000 0.75000 1.00000 Phonon energies in Hartree : 3.656332E-04 3.656332E-04 6.482449E-04 1.468950E-03 1.468950E-03 1.723162E-03 Phonon frequencies in cm-1 : - 8.024721E+01 8.024721E+01 1.422733E+02 3.223972E+02 3.223972E+02 - 3.781903E+02 Phonon wavevector (reduced coordinates) : 0.80000 0.80000 1.00000 Phonon energies in Hartree : 3.156943E-04 3.156943E-04 5.360220E-04 1.494410E-03 1.494410E-03 1.725744E-03 Phonon frequencies in cm-1 : - 6.928688E+01 6.928688E+01 1.176432E+02 3.279850E+02 3.279850E+02 - 3.787570E+02 Phonon wavevector (reduced coordinates) : 0.85000 0.85000 1.00000 Phonon energies in Hartree : 2.506332E-04 2.506332E-04 4.120246E-04 1.521753E-03 1.521753E-03 1.727796E-03 Phonon frequencies in cm-1 : - 5.500763E+01 5.500763E+01 9.042895E+01 3.339861E+02 3.339861E+02 - 3.792073E+02 Speed of sound for this q and mode: in atomic units: 0.1410758998E-02 in units km/s: 3.08631 Partial Debye temperature for this q and mode: in atomic units: 0.8226992616E-03 in SI units K : 259.78757 Speed of sound for this q and mode: in atomic units: 0.1410758998E-02 in units km/s: 3.08631 Partial Debye temperature for this q and mode: in atomic units: 0.8226992616E-03 in SI units K : 259.78757 Speed of sound for this q and mode: in atomic units: 0.2319195732E-02 in units km/s: 5.07368 Partial Debye temperature for this q and mode: in atomic units: 0.1352463899E-02 in SI units K : 427.07381 Phonon wavevector (reduced coordinates) : 0.90000 0.90000 1.00000 Phonon energies in Hartree : 1.737148E-04 1.737148E-04 2.793762E-04 1.546012E-03 1.546012E-03 1.729238E-03 Phonon frequencies in cm-1 : - 3.812600E+01 3.812600E+01 6.131598E+01 3.393103E+02 3.393103E+02 - 3.795239E+02 Speed of sound for this q and mode: in atomic units: 0.1466703808E-02 in units km/s: 3.20870 Partial Debye temperature for this q and mode: in atomic units: 0.8553240779E-03 in SI units K : 270.08966 Speed of sound for this q and mode: in atomic units: 0.1466703808E-02 in units km/s: 3.20870 Partial Debye temperature for this q and mode: in atomic units: 0.8553240779E-03 in SI units K : 270.08966 Speed of sound for this q and mode: in atomic units: 0.2358820295E-02 in units km/s: 5.16037 Partial Debye temperature for this q and mode: in atomic units: 0.1375571389E-02 in SI units K : 434.37057 Phonon wavevector (reduced coordinates) : 0.95000 0.95000 1.00000 Phonon energies in Hartree : 8.883718E-05 8.883718E-05 1.410789E-04 1.562645E-03 1.562645E-03 1.730079E-03 Phonon frequencies in cm-1 : - 1.949751E+01 1.949751E+01 3.096325E+01 3.429610E+02 3.429610E+02 - 3.797084E+02 Speed of sound for this q and mode: in atomic units: 0.1500134812E-02 in units km/s: 3.28183 Partial Debye temperature for this q and mode: in atomic units: 0.8748197270E-03 in SI units K : 276.24589 Speed of sound for this q and mode: in atomic units: 0.1500134812E-02 in units km/s: 3.28183 Partial Debye temperature for this q and mode: in atomic units: 0.8748197270E-03 in SI units K : 276.24589 Speed of sound for this q and mode: in atomic units: 0.2382307034E-02 in units km/s: 5.21175 Partial Debye temperature for this q and mode: in atomic units: 0.1389267933E-02 in SI units K : 438.69560 Phonon wavevector (reduced coordinates) : 1.00000 1.00000 1.00000 Phonon energies in Hartree : 0.000000E+00 0.000000E+00 0.000000E+00 1.568554E-03 1.568554E-03 1.568554E-03 Phonon frequencies in cm-1 : - 0.000000E+00 0.000000E+00 0.000000E+00 3.442577E+02 3.442577E+02 - 3.442577E+02 Phonon wavevector (reduced coordinates) : 0.95000 0.95000 0.95000 Phonon energies in Hartree : 6.837554E-05 6.837554E-05 1.350811E-04 1.566706E-03 1.566706E-03 1.725215E-03 Phonon frequencies in cm-1 : - 1.500670E+01 1.500670E+01 2.964687E+01 3.438523E+02 3.438523E+02 - 3.786409E+02 Speed of sound for this q and mode: in atomic units: 0.1333231734E-02 in units km/s: 2.91670 Partial Debye temperature for this q and mode: in atomic units: 0.7774884048E-03 in SI units K : 245.51113 Speed of sound for this q and mode: in atomic units: 0.1333231734E-02 in units km/s: 2.91670 Partial Debye temperature for this q and mode: in atomic units: 0.7774884048E-03 in SI units K : 245.51113 Speed of sound for this q and mode: in atomic units: 0.2633900813E-02 in units km/s: 5.76216 Partial Debye temperature for this q and mode: in atomic units: 0.1535987547E-02 in SI units K : 485.02593 Phonon wavevector (reduced coordinates) : 0.90000 0.90000 0.90000 Phonon energies in Hartree : 1.329417E-04 1.329417E-04 2.681893E-04 1.561387E-03 1.561387E-03 1.710765E-03 Phonon frequencies in cm-1 : - 2.917734E+01 2.917734E+01 5.886075E+01 3.426849E+02 3.426849E+02 - 3.754696E+02 Speed of sound for this q and mode: in atomic units: 0.1296093084E-02 in units km/s: 2.83545 Partial Debye temperature for this q and mode: in atomic units: 0.7558306020E-03 in SI units K : 238.67214 Speed of sound for this q and mode: in atomic units: 0.1296093084E-02 in units km/s: 2.83545 Partial Debye temperature for this q and mode: in atomic units: 0.7558306020E-03 in SI units K : 238.67214 Speed of sound for this q and mode: in atomic units: 0.2614666998E-02 in units km/s: 5.72008 Partial Debye temperature for this q and mode: in atomic units: 0.1524771141E-02 in SI units K : 481.48407 Phonon wavevector (reduced coordinates) : 0.85000 0.85000 0.85000 Phonon energies in Hartree : 1.901717E-04 1.901717E-04 3.971959E-04 1.553307E-03 1.553307E-03 1.689692E-03 Phonon frequencies in cm-1 : - 4.173787E+01 4.173787E+01 8.717443E+01 3.409115E+02 3.409115E+02 - 3.708445E+02 Phonon wavevector (reduced coordinates) : 0.80000 0.80000 0.80000 Phonon energies in Hartree : 2.371963E-04 2.371963E-04 5.195984E-04 1.543697E-03 1.543697E-03 1.665803E-03 Phonon frequencies in cm-1 : - 5.205858E+01 5.205858E+01 1.140387E+02 3.388022E+02 3.388022E+02 - 3.656016E+02 Phonon wavevector (reduced coordinates) : 0.75000 0.75000 0.75000 Phonon energies in Hartree : 2.722873E-04 2.722873E-04 6.322816E-04 1.534136E-03 1.534136E-03 1.643150E-03 Phonon frequencies in cm-1 : - 5.976015E+01 5.976015E+01 1.387698E+02 3.367039E+02 3.367039E+02 - 3.606296E+02 Phonon wavevector (reduced coordinates) : 0.70000 0.70000 0.70000 Phonon energies in Hartree : 2.953189E-04 2.953189E-04 7.314530E-04 1.526110E-03 1.526110E-03 1.625042E-03 Phonon frequencies in cm-1 : - 6.481501E+01 6.481501E+01 1.605354E+02 3.349424E+02 3.349424E+02 - 3.566555E+02 Phonon wavevector (reduced coordinates) : 0.65000 0.65000 0.65000 Phonon energies in Hartree : 3.079350E-04 3.079350E-04 8.130088E-04 1.520490E-03 1.520490E-03 1.613206E-03 Phonon frequencies in cm-1 : - 6.758392E+01 6.758392E+01 1.784348E+02 3.337090E+02 3.337090E+02 - 3.540578E+02 Phonon wavevector (reduced coordinates) : 0.60000 0.60000 0.60000 Phonon energies in Hartree : 3.131609E-04 3.131609E-04 8.733514E-04 1.517288E-03 1.517288E-03 1.607341E-03 Phonon frequencies in cm-1 : - 6.873087E+01 6.873087E+01 1.916785E+02 3.330062E+02 3.330062E+02 - 3.527705E+02 Phonon wavevector (reduced coordinates) : 0.55000 0.55000 0.55000 Phonon energies in Hartree : 3.144589E-04 3.144589E-04 9.101687E-04 1.515870E-03 1.515870E-03 1.605454E-03 Phonon frequencies in cm-1 : - 6.901574E+01 6.901574E+01 1.997589E+02 3.326951E+02 3.326951E+02 - 3.523564E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.50000 0.50000 Phonon energies in Hartree : 3.145491E-04 3.145491E-04 9.225051E-04 1.515503E-03 1.515503E-03 1.605176E-03 Phonon frequencies in cm-1 : - 6.903555E+01 6.903555E+01 2.024665E+02 3.326144E+02 3.326144E+02 - 3.522955E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.45000 0.50000 Phonon energies in Hartree : 3.223715E-04 3.332238E-04 9.172299E-04 1.510985E-03 1.515740E-03 1.598191E-03 Phonon frequencies in cm-1 : - 7.075237E+01 7.313418E+01 2.013087E+02 3.316229E+02 3.326665E+02 - 3.507624E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.40000 0.50000 Phonon energies in Hartree : 3.430001E-04 3.822372E-04 9.018838E-04 1.498556E-03 1.515169E-03 1.581233E-03 Phonon frequencies in cm-1 : - 7.527982E+01 8.389137E+01 1.979406E+02 3.288951E+02 3.325411E+02 - 3.470404E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.35000 0.50000 Phonon energies in Hartree : 3.698289E-04 4.462496E-04 8.785494E-04 1.481231E-03 1.507478E-03 1.567838E-03 Phonon frequencies in cm-1 : - 8.116805E+01 9.794047E+01 1.928193E+02 3.250926E+02 3.308531E+02 - 3.441006E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.30000 0.50000 Phonon energies in Hartree : 3.958854E-04 5.073143E-04 8.533551E-04 1.462957E-03 1.487554E-03 1.572167E-03 Phonon frequencies in cm-1 : - 8.688681E+01 1.113426E+02 1.872898E+02 3.210820E+02 3.264804E+02 - 3.450507E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.25000 0.50000 Phonon energies in Hartree : 4.159581E-04 5.442385E-04 8.398450E-04 1.447372E-03 1.465264E-03 1.591419E-03 Phonon frequencies in cm-1 : - 9.129224E+01 1.194465E+02 1.843247E+02 3.176615E+02 3.215882E+02 - 3.492760E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.20000 0.50000 Phonon energies in Hartree : 4.274278E-04 5.412255E-04 8.509430E-04 1.436702E-03 1.448188E-03 1.619981E-03 Phonon frequencies in cm-1 : - 9.380956E+01 1.187853E+02 1.867604E+02 3.153196E+02 3.178404E+02 - 3.555448E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.15000 0.50000 Phonon energies in Hartree : 4.304933E-04 5.078008E-04 8.788541E-04 1.431249E-03 1.437678E-03 1.652732E-03 Phonon frequencies in cm-1 : - 9.448236E+01 1.114494E+02 1.928862E+02 3.141229E+02 3.155338E+02 - 3.627329E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.10000 0.50000 Phonon energies in Hartree : 4.278663E-04 4.662753E-04 9.068088E-04 1.429681E-03 1.432494E-03 1.683226E-03 Phonon frequencies in cm-1 : - 9.390581E+01 1.023356E+02 1.990215E+02 3.137787E+02 3.143961E+02 - 3.694253E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.05000 0.50000 Phonon energies in Hartree : 4.237040E-04 4.339366E-04 9.255817E-04 1.429928E-03 1.430616E-03 1.704816E-03 Phonon frequencies in cm-1 : - 9.299227E+01 9.523809E+01 2.031417E+02 3.138329E+02 3.139839E+02 - 3.741638E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.00000 0.50000 Phonon energies in Hartree : 4.218018E-04 4.218018E-04 9.320487E-04 1.430235E-03 1.430235E-03 1.712607E-03 Phonon frequencies in cm-1 : - 9.257480E+01 9.257480E+01 2.045610E+02 3.139004E+02 3.139004E+02 - 3.758737E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.02500 0.52500 Phonon energies in Hartree : 4.247415E-04 4.258720E-04 9.303333E-04 1.429745E-03 1.430690E-03 1.708578E-03 Phonon frequencies in cm-1 : - 9.321998E+01 9.346811E+01 2.041846E+02 3.137927E+02 3.140001E+02 - 3.749894E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.05000 0.55000 Phonon energies in Hartree : 4.332940E-04 4.376791E-04 9.252837E-04 1.428402E-03 1.432002E-03 1.696708E-03 Phonon frequencies in cm-1 : - 9.509704E+01 9.605946E+01 2.030763E+02 3.134979E+02 3.142881E+02 - 3.723844E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.07500 0.57500 Phonon energies in Hartree : 4.467026E-04 4.560862E-04 9.171888E-04 1.426586E-03 1.434025E-03 1.677647E-03 Phonon frequencies in cm-1 : - 9.803989E+01 1.000993E+02 2.012997E+02 3.130994E+02 3.147322E+02 - 3.682010E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.10000 0.60000 Phonon energies in Hartree : 4.638243E-04 4.793957E-04 9.065339E-04 1.424907E-03 1.436541E-03 1.652464E-03 Phonon frequencies in cm-1 : - 1.017977E+02 1.052152E+02 1.989612E+02 3.127310E+02 3.152842E+02 - 3.626739E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.12500 0.62500 Phonon energies in Hartree : 4.832390E-04 5.055242E-04 8.940143E-04 1.424176E-03 1.439287E-03 1.622619E-03 Phonon frequencies in cm-1 : - 1.060587E+02 1.109497E+02 1.962135E+02 3.125704E+02 3.158869E+02 - 3.561237E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.15000 0.65000 Phonon energies in Hartree : 5.033174E-04 5.321238E-04 8.805690E-04 1.425358E-03 1.441990E-03 1.589916E-03 Phonon frequencies in cm-1 : - 1.104654E+02 1.167877E+02 1.932626E+02 3.128299E+02 3.164802E+02 - 3.489462E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.17500 0.67500 Phonon energies in Hartree : 5.222390E-04 5.566775E-04 8.674253E-04 1.429514E-03 1.444393E-03 1.556406E-03 Phonon frequencies in cm-1 : - 1.146182E+02 1.221766E+02 1.903778E+02 3.137421E+02 3.170077E+02 - 3.415916E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.20000 0.70000 Phonon energies in Hartree : 5.380076E-04 5.766439E-04 8.561131E-04 1.437684E-03 1.446278E-03 1.524241E-03 Phonon frequencies in cm-1 : - 1.180790E+02 1.265587E+02 1.878951E+02 3.155352E+02 3.174214E+02 - 3.345321E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.22500 0.72500 Phonon energies in Hartree : 5.485912E-04 5.897305E-04 8.483340E-04 1.447478E-03 1.450594E-03 1.495563E-03 Phonon frequencies in cm-1 : - 1.204019E+02 1.294309E+02 1.861878E+02 3.176847E+02 3.183685E+02 - 3.282381E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.25000 0.75000 Phonon energies in Hartree : 5.523383E-04 5.942939E-04 8.455434E-04 1.447890E-03 1.464217E-03 1.476435E-03 Phonon frequencies in cm-1 : - 1.212242E+02 1.304324E+02 1.855753E+02 3.177751E+02 3.213586E+02 - 3.240401E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.27500 0.72500 Phonon energies in Hartree : 5.436976E-04 5.959186E-04 8.447005E-04 1.443237E-03 1.470466E-03 1.478208E-03 Phonon frequencies in cm-1 : - 1.193278E+02 1.307890E+02 1.853903E+02 3.167539E+02 3.227300E+02 - 3.244292E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.30000 0.70000 Phonon energies in Hartree : 5.226481E-04 5.951584E-04 8.434334E-04 1.437335E-03 1.479867E-03 1.485213E-03 Phonon frequencies in cm-1 : - 1.147080E+02 1.306222E+02 1.851122E+02 3.154585E+02 3.247933E+02 - 3.259667E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.32500 0.67500 Phonon energies in Hartree : 4.944725E-04 5.848034E-04 8.449154E-04 1.435633E-03 1.487328E-03 1.498039E-03 Phonon frequencies in cm-1 : - 1.085242E+02 1.283495E+02 1.854375E+02 3.150850E+02 3.264308E+02 - 3.287816E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.35000 0.65000 Phonon energies in Hartree : 4.619784E-04 5.606523E-04 8.521147E-04 1.440528E-03 1.495296E-03 1.512581E-03 Phonon frequencies in cm-1 : - 1.013925E+02 1.230489E+02 1.870176E+02 3.161594E+02 3.281796E+02 - 3.319731E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.37500 0.62500 Phonon energies in Hartree : 4.274625E-04 5.221379E-04 8.652457E-04 1.452607E-03 1.502962E-03 1.528506E-03 Phonon frequencies in cm-1 : - 9.381718E+01 1.145960E+02 1.898995E+02 3.188104E+02 3.298619E+02 - 3.354682E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.40000 0.60000 Phonon energies in Hartree : 3.933283E-04 4.725691E-04 8.816518E-04 1.469843E-03 1.509001E-03 1.546429E-03 Phonon frequencies in cm-1 : - 8.632559E+01 1.037169E+02 1.935002E+02 3.225933E+02 3.311873E+02 - 3.394020E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.42500 0.57500 Phonon energies in Hartree : 3.622167E-04 4.180346E-04 8.978443E-04 1.488016E-03 1.512821E-03 1.566191E-03 Phonon frequencies in cm-1 : - 7.949738E+01 9.174799E+01 1.970540E+02 3.265818E+02 3.320257E+02 - 3.437391E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.45000 0.55000 Phonon energies in Hartree : 3.369681E-04 3.667192E-04 9.110572E-04 1.502938E-03 1.514703E-03 1.585455E-03 Phonon frequencies in cm-1 : - 7.395594E+01 8.048555E+01 1.999539E+02 3.298567E+02 3.324388E+02 - 3.479672E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.47500 0.52500 Phonon energies in Hartree : 3.203612E-04 3.287878E-04 9.195743E-04 1.512332E-03 1.515371E-03 1.599835E-03 Phonon frequencies in cm-1 : - 7.031116E+01 7.216057E+01 2.018232E+02 3.319186E+02 3.325854E+02 - 3.511232E+02 Phonon wavevector (reduced coordinates) : 0.50000 0.50000 0.50000 Phonon energies in Hartree : 3.145491E-04 3.145491E-04 9.225051E-04 1.515503E-03 1.515503E-03 1.605176E-03 Phonon frequencies in cm-1 : - 6.903555E+01 6.903555E+01 2.024665E+02 3.326144E+02 3.326144E+02 - 3.522955E+02 ================================================================================ Treat the second list of vectors Phonon at Gamma, with non-analyticity in the direction (cartesian coordinates) 1.00000 0.00000 0.00000 Phonon energies in Hartree : 0.000000E+00 0.000000E+00 0.000000E+00 1.568554E-03 1.568554E-03 1.730353E-03 Phonon frequencies in cm-1 : - 0.000000E+00 0.000000E+00 0.000000E+00 3.442577E+02 3.442577E+02 - 3.797686E+02 - - Proc. 0 individual time (sec): cpu= 2.7 wall= 2.7 ================================================================================ +Total cpu time 2.677 and wall time 2.707 sec anaddb : the run completed succesfully.
Please, open also the other output file, named trf2_5_B2EPS.out.freq. It contains the frequencies, in a format suitable for graphical output, using the program band2eps (the latter should be more documented, and will not be described in the present tutorial).
You can copy the files trf2_6.in and trf2_6.files to the Work_rf2 directory, then issue
band2eps < trf2_6.files > trf2_6.log
trf2_6.in trf2_6.out.eps trf2_5.out_B2EPS.freq no
#Input file for 'band2eps.' This data layout must be used, line-by-line. #number of atoms in a cell : natom 2 #minimum value, maximum value and number of tics of the vertical axe : min 0.0 max 400.0 ngrad 8 #Units : 1 for cm-1, 2 for THz : cunit 1 #Number of lines : nlines 7 #Description of the points in q space : qpoint_name gamma K X gamma L X W L #Number of q points for each line : nqline 10 10 10 10 10 10 11 #Scale factor for each line : scale 1.06066017 0.35355339 1.0 0.86602540 0.86602540 0.5 0.70710678 #COLOR DEFINITION : #put 1 in place of the atom you want to be colored in #red red 0 0 #green green 0 0 #blue blue 0 0 #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = band2eps #%% test_chain = trf2_1.in, trf2_3.in, trf2_4.in, trf2_5.in, trf2_6.in, trf2_7.in #%% no_check = yes #%% [files] ### the tests have been disabled ##%% files_to_test = ##%% trf2_6.out.eps, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00 #%% [paral_info] #%% max_nprocs = 1 #%% [extra_info] #%% authors = X. Gonze #%% keywords = #%% description = Input file for 'band2eps.' This data layout must be used, line-by-line. #%%<END TEST_INFO>
The file trf2_6.out.eps has been produced. It is an .eps file (eps stand for Encapsulated PostScript). You can use the program ghostview to vizualize it. The command to issue will depend on the way you have configured your machine, but the following might perhaps do the work:
gv trf2_6.out.eps
You should see a nice phonon band structure for AlAs. Well, not so nice, after all, because there are two strange dips for the highest phonon band, at the Gamma point. This is due to the lack of LO-TO splitting for the ANADDB treatment of the first list of vector. The correct phonon band structure is:
You can correct the LO-TO splitting by the following little hack.
Open the file trf2_5_B2EPS.freq, and note that the value of the frequency, in the sixth column, has a discontinuity exactly for the Gamma point (the three first columns give the k point coordinates), that is, at lines 1 and 31:
0.000000D+00 0.000000D+00 0.000000D+00 0.156855D-02 0.156855D-02 0.156855D-02
Replace these values (sixth column, line 1 and 31) by the correct value, including the LO-TO splitting, that you can find in the file trf2_5.out, at the end, second list of vector. That is, the lines 1 and 31 should now read:
0.000000D+00 0.000000D+00 0.000000D+00 0.156855D-02 0.156855D-02 1.730353E-03
Now, run band2eps again. Your phonon band structure should be perfect!
It can be compared with the AlAs phonon band structure published in [Giannozzi1991].
Of course, one should make a convergence study, on the k and q point grids (separately!), as well as on the energy cut-off, and also test LDA and GGA… But this is left to the user! You can have a look at the paper [Petretto2018] for a careful analysis of phonon dispersion convergence with Abinit.
Plotting phonon bands with AbiPy¶
If AbiPy is installed on your machine, you can use the abiopen script
with the --expose
option to visualize the phonon band structure stored in the PHBST.nc file
produced by anaddb.
For instance:
abiopen.py trf2_5.out_PHBST.nc --expose --seaborn=talk
produces the following plot without LO-TO splitting:
Alternatively, we can start from the DDB file and use the abiview script. In this case, AbiPy will generate the anaddb input file with all the variables required to handle the plotting of the LO-TO splitting, invoke anaddb for us and finally plot the results. All of this with just two lines:
# Copy the tutorial output file to have the correct file extension (DDB) # otherwise abiview does not know how to handle our file. cp trf2_3.ddb.out trf2_3_DDB abiview.py ddb trf2_3_DDB -sns=talk
We can also compare our results with the phonon band structure available on the materials project .
First of all, let’s find the materials project identifier associated to this particular phase of AlAs. Of course, one could use the materials project web interface but we can also do it from the shell by just passing our Abinit input file to the abistruct script:
abistruct.py mp_match trf2_1.in # Found 1 structures in Materials Project database (use `verbose` to get further info) ######################### abivars input for mp-2172 ######################### # Full Formula (Al1 As1) # Reduced Formula: AlAs # abc : 4.054377 4.054377 4.054377 # angles: 60.000000 60.000000 60.000000 # # Spglib space group info (magnetic symmetries are not taken into account). # Spacegroup: F-43m (216), Hall: F -4 2 3, Abinit spg_number: None # Crystal_system: cubic, Lattice_type: cubic, Point_group: -43m # # Idx Symbol Reduced_Coords Wyck EqIdx # ----- -------- -------------------------- ------ ------- # 0 Al +0.00000 +0.00000 +0.00000 a 0 # 1 As +0.25000 +0.25000 +0.25000 d 1 natom 2 ntypat 2 typat 1 2 znucl 13 33 xred 0.0000000000 0.0000000000 0.0000000000 0.2500000000 0.2500000000 0.2500000000 acell 1.0 1.0 1.0 rprim 6.6351943530 0.0000000000 3.8308312587 2.2117314510 6.2557212277 3.8308312587 0.0000000000 0.0000000000 7.6616624984
AbiPy found one entry in the MP database that matches the structure given in our input file
and has generated the corresponding input file.
Now we know that this phase of AlAs corresponds to mp-2172
and we can
look at the phonon band structure computed by [Petretto2018a] at
https://materialsproject.org/materials/mp-2172/
Tip
For further information on the AbiPy API, please consult the DdbFile notebook . To learn how to automate DFPT calculations with Python, see this jupyter notebook.
6 Thermodynamical properties¶
We will give only a very short example of the use of ANADDB to compute thermodynamical properties. This is because this part of ANADDB is likely the farthest from a clean, stable, usage. By exploring the input variables, the user should be able to produce figures and data like the ones for SiO2 quartz and stishovite, published in [Lee1995].
You can copy the files trf2_7.in and trf2_7.files from $ABI_TESTS/tutorespfn/Input to Work_rf2 and have a look at them. The same DDB as for trf2_4 and trf2_5 is used, namely trf2_3.ddb.out.
trf2_7.in trf2_7.out trf2_3.ddb.out trf2_dummy trf2_dummy1 trf2_dummy2 trf2_dummy3
!Input file for the anaddb code. Analysis of the SiO2 DDB !Flags ifcflag 1 ! Interatomic force constant flag ifcout 0 thmflag 1 ! Thermodynamical properties flag !Wavevector grid number 1 (coarse grid, from DDB) brav 2 ! Bravais Lattice : 1-S.C., 2-F.C., 3-B.C., 4-Hex.) ngqpt 4 4 4 ! Monkhorst-Pack indices nqshft 1 ! number of q-points in repeated basic q-cell q1shft 3*0.0 !Interatomic force constant info dipdip 1 ! Dipole-dipole interaction treatment !Wavevector grid number 2 (series of fine grids, extrapolated from interat forces) ng2qpt 20 20 20 ! sample the BZ up to ngqpt2 ngrids 5 ! number of grids of increasing size q2shft 3*0.0 !Thermal information nchan 1250 ! # of channels for the DOS with channel width 1 cm-1 nwchan 5 ! # of different channel widths from this integer down to 1 cm-1 thmtol 0.120 ! Tolerance on thermodynamical function fluctuations ntemper 10 ! Number of temperatures temperinc 20. ! Increment of temperature in K for temperature dependency tempermin 20. ! Minimal temperature in Kelvin #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = anaddb #%% test_chain = trf2_1.in, trf2_3.in, trf2_4.in, trf2_5.in, trf2_6.in, trf2_7.in #%% input_ddb = trf2_3.ddb.out #%% [files] #%% files_to_test = #%% trf2_7.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00, fld_options=-easy #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = X. Gonze #%% keywords = #%% description = Input file for the anaddb code. Analysis of the SiO2 DDB #%%<END TEST_INFO>
The following additional input variables are present:
Examine the input file, the input variables, then run anaddb as usual. Then, open the output file. You should be able to find the crucial section:
# At T F(J/mol-c) E(J/mol-c) S(J/(mol-c.K)) C(J/(mol-c.K)) # (A mol-c is the abbreviation of a mole-cell, that is, the # number of Avogadro times the atoms in a unit cell) 2.000E+01 8.1384755E+03 8.1463588E+03 3.9416455E-01 1.4169104E+00 4.000E+01 8.1061318E+03 8.2368069E+03 3.2668770E+00 7.8985031E+00 6.000E+01 7.9980215E+03 8.4575659E+03 7.6590742E+00 1.3992228E+01 8.000E+01 7.7974375E+03 8.7915524E+03 1.2426436E+01 1.9325166E+01 1.000E+02 7.5004822E+03 9.2274431E+03 1.7269609E+01 2.4175006E+01 1.200E+02 7.1069991E+03 9.7544364E+03 2.2061978E+01 2.8411189E+01 1.400E+02 6.6189291E+03 1.0359248E+04 2.6716565E+01 3.1955267E+01 1.600E+02 6.0396227E+03 1.1028289E+04 3.1179167E+01 3.4847423E+01 1.800E+02 5.3732223E+03 1.1749439E+04 3.5423427E+01 3.7183864E+01 2.000E+02 4.6241910E+03 1.2512641E+04 3.9442251E+01 3.9069448E+01
There, one finds, the phonon free energy, the phonon internal energy, the phonon entropy and the phonon heat capacity. The atomic temperature factors can also be computed. An example is presented in v5[22]
Important
Do not forget that we are working in the harmonic approximation; beyond some temperature, anharmonic effects will have a sizeable contributions.